-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1.1-Introduction.qmd
103 lines (75 loc) · 3.02 KB
/
1.1-Introduction.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
title: "Randomization and Simulation Methods"
subtitle: "Introduction"
author:
- Elizabeth King
- Kevin Middleton
format:
revealjs:
theme: [default, custom.scss]
standalone: true
self-contained: true
logo: QMLS_Logo.png
slide-number: true
show-slide-number: all
---
## Module overview
```{r}
#| label: setup
#| echo: false
#| warning: false
#| message: false
library(tidyverse)
library(cowplot)
ggplot2::theme_set(theme_cowplot())
```
1. Core concepts: In what ways is random sampling useful for data analysis?
2. Sampling from data sets: foundations
3. Sampling from data sets: complex designs
4. Sampling from data sets: decision errors and predicting new data
5. Simulating data for inference
## Module prerequisites
- *Quantitative Methods in Life Sciences I*
- Updated R and RStudio
- Basics of probability and statistics
- Basics of R programming methods
## Relevant *Quantitative Methods I* course materials
- Foundational Concepts in Probability & Statistics: Weeks 4, 5, 6, & 7
- Unit 10: Cross Validation (10-4)
- Unit 12: Randomization (12-3)
- [Course files on Github](https://github.com/kmiddleton/quant_methods)
- Clone to your computer for reference
- [Course videos on Youtube](https://www.youtube.com/playlist?list=PLeIk-G-wZpqx1yW49XAHqoccBXhNJrUSu)
## Resources
- [R for Data Science](https://r4ds.had.co.nz/)
- [Tidyverse style guide](https://style.tidyverse.org/)
- [Randomization, Bootstrap and Monte Carlo Methods in Biology](https://www.amazon.com/Randomization-Bootstrap-Methods-Biology-Statistical-dp-0367349949/dp/0367349949/)
- [Computer-Intensive Methods of Data Analysis in Biology](https://www.cambridge.org/core/books/introduction-to-computerintensive-methods-of-data-analysis-in-biology/4258A90A73B35675ECBAC6B57EDB0B5A)
- [Introduction to Modern Statistics](https://openintro-ims.netlify.app/index.html)
- [An Introduction to Statistical Learning](https://www.statlearning.com/)
## What we cover and don't cover
Do:
- Many scenarios where random sampling is useful
- Common cases you will encounter
- How to use these methods in place of "standard" statistical analyses
Don't:
- Every possible use case
- Endless possible questions and applications
## Multiple motivations for this module
1. Demystify the workings & philosophy of statistical tests
2. Empower you to explore and simulate your data sets
3. Allow you to set up tests of the questions you might have about a method
## Target Skillsets
- Statistical understanding
- Programming
- Simulating and evaluating data
- Methods for parallel processing
## Useful Packages
- [purrr](https://purrr.tidyverse.org/index.html)
- part of [tidyverse](https://www.tidyverse.org/)
- [boot](https://cran.r-project.org/web/packages/boot/boot.pdf)
- [bootstrap](https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf)
- [cvTools](https://cran.r-project.org/web/packages/cvTools/cvTools.pdf)
- [caret](http://topepo.github.io/caret/index.html)
- [future](https://future.futureverse.org/)
- [furrr](https://furrr.futureverse.org/)