Skip to content

Krylov-Bogoliubov for commensurate frequencies #251

@oameye

Description

@oameye

Krylov-Bogoliubov method for commensurate frequencies, e.g., $\omega$ and $3\omega$. Technically the one can compute the slow-flow equations for such a system, but at the moment KB in HB.jl compute the wrong equations.

eq1 = d(d(x, t), t) + ω₁^2 * x + α₁ * x^3 + 3 * J₁ * x^2 * y + J₂ * y^2 * x #+ γ₁ * d(x, t) + η₁ * x^2 * d(x, t)
eq2 = d(d(y, t), t) + ω₂^2 * y + α₂ * y^3 + J₁ * x^3 + J₂ * x^2 * y #+ γ₂ * d(y, t) + η₂ * y^2 * d(y, t)


forces = [F * cos* t), 0]

dEOM_temp = DifferentialEquation([eq1, eq2] - forces, [x, y]);

add_harmonic!(dEOM_temp, x, ω) # x will rotate at ω
add_harmonic!(dEOM_temp, y, 3 * ω); # y will rotate at 3*ω

# harmonic_tmp = get_krylov_equations(dEOM_temp, order=1);
harmonic_tmp = get_harmonic_equations(dEOM_temp);

rearranged = HB.rearrange_standard(harmonic_tmp)
prob_temp = HB.Problem(rearranged)
rearranged.equations

image

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinggood first issueGood for newcomersnew featureNew feature or request

    Type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions