-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
184 lines (141 loc) · 5.43 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from osgeo import gdal
import os
from os.path import dirname, basename
import numpy as np
from ftplib import FTP
import re
import datetime
import pymysql
pymysql.install_as_MySQLdb()
ROOT_PATH = ""
IMAGE_PATH = ""
MYSQL_SERVER = ""
MYSQL_USER = ""
MYSQL_PASSWD = ""
MYSQL_DB = ""
def do_stuff():
#run_whole_process(2012, 5, 20, 17, 8)
#run_whole_process(2012, 5, 27, 18, 8)
#run_whole_process(2012, 5, 28, 17, 8)
#run_whole_process(2012, 5, 28, 18, 8)
for day in range(13, 27):
print day
run_whole_process(2012, 5, day, 12, 9)
run_whole_process(2012, 5, day, 11, 9)
#for day in range(1, 9):
# print day
# run_whole_process(2012, 5, day, 17, 8)
# run_whole_process(2012, 5, day, 18, 8)
#for day in range(29, 32):
# print day
# run_whole_process(2012, 5, day, 17, 8)
# run_whole_process(2012, 5, day, 18, 8)
def run_whole_process(year, month, day, h, v):
"""Download, process and insert into the database all values from the specified MODIS image.
The image is specified by the year, month and day of the image, as the horizontal and vertical
co-ordinates in the MODIS grid reference system (see http://www.yale.edu/ceo/DataArchive/modis.html)
"""
filename = get_from_ftp(year, month, day, h, v)
#filename = "MOD09GA.A2006143.h17v03.005.2008320021945.hdf"
resample(filename)
date = datetime.datetime(year, month, day)
add_to_db("/home/data", date)
def get_from_ftp(year, month, day, h, v):
"""Given a year, month, day and horizontal and vertical co-ordinate in the MODIS grid reference system,
download the MOD09GA product from the FTP site.
This checks to see if the destination local file exists, and if so uses it rather than downloading again.
"""
ftp = FTP("e4ftl01.cr.usgs.gov")
ftp.login()
files = ftp.nlst("MOLT/MOD09GA.005/%02d.%02d.%02d/" % (year, month, day))
for f in files:
if re.search("h%02dv%02d.+\.hdf$" % (h, v), f):
print f
filename = f
folder = dirname(filename)
file = basename(filename)
if os.path.exists(file): return file
print "Downloading from FTP"
ftp.cwd(folder)
ftp.retrbinary('RETR %s' % file, open('%s' % file, 'wb').write)
print "Downloaded file %s" % file
ftp.close()
return file
def resample(hdf_filename):
"""Resample the given HDF filename to a WGS84 Geographic Co-ordinate System, storing the outputs
as GeoTiffs.
Uses the parameter values stored in base_param.prm, adding INPUT_FILENAME with the appropriate HDF
file at the top.
"""
# Edit parameter file appropriately
f = open("base_param.prm", "r")
lines = f.readlines()
outfile = open("image.prm", "w")
outfile.write("INPUT_FILENAME = %s\n" % hdf_filename)
outfile.writelines(lines)
outfile.close()
# Run MRT resample tool
os.system("./ResampleTool %s/image.prm" % (ROOT_PATH))
def add_to_db(basename, date):
"""Add the data from the MODIS GeoTIFF files with the basename given to the database.
Values of database parameters are given at the top of this script. This assumes the reprojection
has been done using the resample function in this file, so that the correct output bands are available.
This ignores crazy values (< 0.01% reflectance), clouds and non-land pixels, using the appropriate masks in the
MODIS data.
"""
print "Running add to db"
quality_tiff = gdal.Open("%s.QC_500m_1.tif" % basename)
b1_tiff = gdal.Open("%s.sur_refl_b01_1.tif" % basename)
b2_tiff = gdal.Open("%s.sur_refl_b02_1.tif" % basename)
b3_tiff = gdal.Open("%s.sur_refl_b03_1.tif" % basename)
b4_tiff = gdal.Open("%s.sur_refl_b04_1.tif" % basename)
b5_tiff = gdal.Open("%s.sur_refl_b05_1.tif" % basename)
b6_tiff = gdal.Open("%s.sur_refl_b06_1.tif" % basename)
b7_tiff = gdal.Open("%s.sur_refl_b07_1.tif" % basename)
g = b1_tiff.GetGeoTransform()
minX = g[0]
maxY = g[3]
pixel_size = g[1]
q = quality_tiff.ReadAsArray()
b1 = b1_tiff.ReadAsArray()
b2 = b2_tiff.ReadAsArray()
b3 = b3_tiff.ReadAsArray()
b4 = b4_tiff.ReadAsArray()
b5 = b5_tiff.ReadAsArray()
b6 = b6_tiff.ReadAsArray()
b7 = b7_tiff.ReadAsArray()
ignore_below = 100
conn = pymysql.connect(host=MYSQL_SERVER, user=MYSQL_USER, passwd=MYSQL_PASSWD, db=MYSQL_DB)
cursor = conn.cursor()
for index, value in np.ndenumerate(b1):
y, x = index
lat = maxY - (y * pixel_size)
lon = minX + (x * pixel_size)
#if lat > 52 or lat < 50: continue
#if lon > 0 or lon < -1.5: continue
band1 = value
band2 = b2[y, x]
band3 = b3[y, x]
band4 = b4[y, x]
band5 = b5[y, x]
band6 = b6[y, x]
band7 = b7[y, x]
quality = q[y, x]
all_bands = [band1, band2, band3, band4, band5, band6, band7]
# Ignore all values below ignore_below
# Basically negative is unmapped, and v low values are sea
if min(all_bands) < ignore_below: continue
# Bitwise AND to extract the last two binary digits of the quality int
cloud_mask = quality & 3
land_mask = quality & 56
land_mask = land_mask >> 3
# Don't bother with this cell unless it is clear
if cloud_mask != 0: continue
if land_mask != 1: continue
print lat, lon, band1, band2, cloud_mask
ndvi = (band2 - band1) / (float(band2) + band1)
ndwi = (band2 - band5) / (float(band2) + band5)
sql_string = "INSERT INTO Data (latitude, longitude, bandOne, bandTwo, bandThree, bandFour, bandFive, bandSix, bandSeven, vegetation, NDWI, timeTaken) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, \"%s\");" % (lat, lon, band1, band2, band3, band4, band5, band6, band7, ndvi, ndwi, date.strftime("%Y-%m-%d %H:%M:%S"))
#print sql_string
print cursor.execute(sql_string)
conn.commit()