@@ -21,8 +21,8 @@ climate goals. They summarize key metrics attributed to the portfolio
2121(e.g. production, emission factors), and calculate targets based on
2222climate scenarios. They implement in R the last step of the free
2323software ‘PACTA’ (Paris Agreement Capital Transition Assessment;
24- < https://www.transitionmonitor.com/ > ). Financial institutions use ‘PACTA’ to
25- study how their capital allocation impacts the climate.
24+ < https://www.transitionmonitor.com/ > ). Financial institutions use
25+ ‘PACTA’ to study how their capital allocation impacts the climate.
2626
2727## Installation
2828
@@ -73,21 +73,21 @@ matched %>%
7373 region_isos = region_isos_demo
7474 )
7575# > Warning: Removing rows in abcd where `emission_factor` is NA
76- # > # A tibble: 166 × 6
77- # > sector year region scenario_source emission_factor_met…¹ emiss…²
78- # > <chr> <dbl> <chr> <chr> <chr> <dbl>
79- # > 1 cement 2013 advanced economies demo_2020 projected 0.0217
80- # > 2 cement 2013 developing asia demo_2020 projected 0.0606
81- # > 3 cement 2013 global demo_2020 projected 0.658
82- # > 4 cement 2014 advanced economies demo_2020 projected 0.0219
83- # > 5 cement 2014 developing asia demo_2020 projected 0.0604
84- # > 6 cement 2014 global demo_2020 projected 0.659
85- # > 7 cement 2015 advanced economies demo_2020 projected 0.0221
86- # > 8 cement 2015 developing asia demo_2020 projected 0.0603
87- # > 9 cement 2015 global demo_2020 projected 0.660
88- # > 10 cement 2016 advanced economies demo_2020 projected 0.0223
89- # > # … with 156 more rows, and abbreviated variable names ¹emission_factor_metric,
90- # > # ² emission_factor_value
76+ # > # A tibble: 96 × 6
77+ # > sector year region scenario_source emission_factor_metric
78+ # > <chr> <dbl> <chr> <chr> <chr>
79+ # > 1 steel 2021 advanced economies demo_2020 projected
80+ # > 2 steel 2021 global demo_2020 projected
81+ # > 3 steel 2022 advanced economies demo_2020 projected
82+ # > 4 steel 2022 global demo_2020 projected
83+ # > 5 steel 2024 advanced economies demo_2020 projected
84+ # > 6 steel 2024 global demo_2020 projected
85+ # > 7 steel 2025 advanced economies demo_2020 projected
86+ # > 8 steel 2025 global demo_2020 projected
87+ # > 9 steel 2027 advanced economies demo_2020 projected
88+ # > 10 steel 2027 global demo_2020 projected
89+ # > # ℹ 86 more rows
90+ # > # ℹ 1 more variable: emission_factor_value <dbl>
9191```
9292
9393- Use ` target_market_share ` to calculate market-share scenario targets
@@ -100,22 +100,22 @@ matched %>%
100100 scenario = scenario_demo_2020 ,
101101 region_isos = region_isos_demo
102102 )
103- # > # A tibble: 1,790 × 10
104- # > sector techno…¹ year region scena…² metric produ…³ techn…⁴ scope perce…⁵
105- # > <chr> <chr> <int > <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl>
106- # > 1 automotive electric 2020 global demo_2… proje… 324592. 0.0759 sect… 0
107- # > 2 automotive electric 2020 global demo_2… targe… 324592. 0.0759 sect… 0
108- # > 3 automotive electric 2020 global demo_2… targe… 324592. 0.0759 sect… 0
109- # > 4 automotive electric 2020 global demo_2… targe… 324592. 0.0759 sect… 0
110- # > 5 automotive electric 2021 global demo_2… proje… 339656. 0.0786 sect… 0.00352
111- # > 6 automotive electric 2021 global demo_2… targe… 329191. 0.0744 sect… 0.00108
112- # > 7 automotive electric 2021 global demo_2… targe… 352505. 0.0809 sect… 0.00653
113- # > 8 automotive electric 2021 global demo_2… targe… 330435. 0.0747 sect… 0.00137
114- # > 9 automotive electric 2022 global demo_2… proje… 354720. 0.0813 sect… 0.00705
115- # > 10 automotive electric 2022 global demo_2… targe… 333693. 0.0730 sect… 0.00213
116- # > # … with 1,780 more rows, and abbreviated variable names ¹technology,
117- # > # ²scenario_source, ³production, ⁴ technology_share,
118- # > # ⁵ percentage_of_initial_production_by_scope
103+ # > # A tibble: 1,232 × 10
104+ # > sector technology year region scenario_source metric production
105+ # > <chr> <chr> <dbl > <chr> <chr> <chr> <dbl>
106+ # > 1 automotive electric 2020 global demo_2020 projected 3664.
107+ # > 2 automotive electric 2020 global demo_2020 target_cps 3664.
108+ # > 3 automotive electric 2020 global demo_2020 target_sds 3664.
109+ # > 4 automotive electric 2020 global demo_2020 target_sps 3664.
110+ # > 5 automotive electric 2021 global demo_2020 projected 8472.
111+ # > 6 automotive electric 2021 global demo_2020 target_cps 3845.
112+ # > 7 automotive electric 2021 global demo_2020 target_sds 4766.
113+ # > 8 automotive electric 2021 global demo_2020 target_sps 3894.
114+ # > 9 automotive electric 2022 global demo_2020 projected 8436.
115+ # > 10 automotive electric 2022 global demo_2020 target_cps 4023.
116+ # > # ℹ 1,222 more rows
117+ # > # ℹ 3 more variables: technology_share <dbl>, scope <chr> ,
118+ # > # percentage_of_initial_production_by_scope <dbl>
119119```
120120
121121- Or at the company level:
@@ -132,23 +132,22 @@ matched %>%
132132# > This will result in company-level results, weighted by the portfolio
133133# > loan size, which is rarely useful. Did you mean to set one of these
134134# > arguments to `FALSE`?
135- # > # A tibble: 32,402 × 11
136- # > sector techno…¹ year region scena…² name_…³ metric produ…⁴ techn…⁵ scope
137- # > <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
138- # > 1 automotive electric 2020 global demo_2… toyota… proje… 324592. 0.0759 sect…
139- # > 2 automotive electric 2020 global demo_2… toyota… targe… 324592. 0.0759 sect…
140- # > 3 automotive electric 2020 global demo_2… toyota… targe… 324592. 0.0759 sect…
141- # > 4 automotive electric 2020 global demo_2… toyota… targe… 324592. 0.0759 sect…
142- # > 5 automotive electric 2021 global demo_2… toyota… proje… 339656. 0.0786 sect…
143- # > 6 automotive electric 2021 global demo_2… toyota… targe… 329191. 0.0744 sect…
144- # > 7 automotive electric 2021 global demo_2… toyota… targe… 352505. 0.0809 sect…
145- # > 8 automotive electric 2021 global demo_2… toyota… targe… 330435. 0.0747 sect…
146- # > 9 automotive electric 2022 global demo_2… toyota… proje… 354720. 0.0813 sect…
147- # > 10 automotive electric 2022 global demo_2… toyota… targe… 333693. 0.0730 sect…
148- # > # … with 32,392 more rows, 1 more variable:
149- # > # percentage_of_initial_production_by_scope <dbl>, and abbreviated variable
150- # > # names ¹technology, ²scenario_source, ³name_abcd, ⁴production,
151- # > # ⁵technology_share
135+ # > # A tibble: 3,200 × 11
136+ # > sector technology year region scenario_source name_abcd metric production
137+ # > <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
138+ # > 1 automoti… electric 2020 global demo_2020 large au… proje… 713.
139+ # > 2 automoti… electric 2020 global demo_2020 large au… targe… 713.
140+ # > 3 automoti… electric 2020 global demo_2020 large au… targe… 713.
141+ # > 4 automoti… electric 2020 global demo_2020 large au… targe… 713.
142+ # > 5 automoti… electric 2020 global demo_2020 large au… proje… 535.
143+ # > 6 automoti… electric 2020 global demo_2020 large au… targe… 535.
144+ # > 7 automoti… electric 2020 global demo_2020 large au… targe… 535.
145+ # > 8 automoti… electric 2020 global demo_2020 large au… targe… 535.
146+ # > 9 automoti… electric 2020 global demo_2020 large au… proje… 690.
147+ # > 10 automoti… electric 2020 global demo_2020 large au… targe… 690.
148+ # > # ℹ 3,190 more rows
149+ # > # ℹ 3 more variables: technology_share <dbl>, scope <chr>,
150+ # > # percentage_of_initial_production_by_scope <dbl>
152151```
153152
154153### Utility Functions
@@ -175,41 +174,42 @@ loanbook_joined_to_abcd_scenario <- matched %>%
175174# portfolio level
176175loanbook_joined_to_abcd_scenario %> %
177176 summarize_weighted_production(scenario , tmsr , smsp , region )
178- # > # A tibble: 702 × 9
179- # > sector_abcd technology year scenario tmsr smsp region weighted…¹ weigh…²
180- # > <chr> <chr> <int> <chr> <dbl> <dbl> <chr> <dbl> <dbl>
181- # > 1 automotive electric 2020 cps 1 0 global 324592. 0.0380
182- # > 2 automotive electric 2020 sds 1 0 global 324592. 0.0380
183- # > 3 automotive electric 2020 sps 1 0 global 324592. 0.0380
184- # > 4 automotive electric 2021 cps 1.12 0.00108 global 339656. 0.0393
185- # > 5 automotive electric 2021 sds 1.16 0.00653 global 339656. 0.0393
186- # > 6 automotive electric 2021 sps 1.14 0.00137 global 339656. 0.0393
187- # > 7 automotive electric 2022 cps 1.24 0.00213 global 354720. 0.0406
188- # > 8 automotive electric 2022 sds 1.32 0.0131 global 354720. 0.0406
189- # > 9 automotive electric 2022 sps 1.29 0.00273 global 354720. 0.0406
190- # > 10 automotive electric 2023 cps 1.35 0.00316 global 369784. 0.0419
191- # > # … with 692 more rows, and abbreviated variable names ¹weighted_production,
192- # > # ²weighted_technology_share
177+ # > # A tibble: 558 × 9
178+ # > sector_abcd technology year scenario tmsr smsp region
179+ # > <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr>
180+ # > 1 automotive electric 2020 cps 1 0 global
181+ # > 2 automotive electric 2020 sds 1 0 global
182+ # > 3 automotive electric 2020 sps 1 0 global
183+ # > 4 automotive electric 2021 cps 1.12 0.00108 global
184+ # > 5 automotive electric 2021 sds 1.16 0.00653 global
185+ # > 6 automotive electric 2021 sps 1.14 0.00137 global
186+ # > 7 automotive electric 2022 cps 1.24 0.00213 global
187+ # > 8 automotive electric 2022 sds 1.32 0.0131 global
188+ # > 9 automotive electric 2022 sps 1.29 0.00273 global
189+ # > 10 automotive electric 2023 cps 1.35 0.00316 global
190+ # > # ℹ 548 more rows
191+ # > # ℹ 2 more variables: weighted_production <dbl>,
192+ # > # weighted_technology_share <dbl>
193193
194194# company level
195195loanbook_joined_to_abcd_scenario %> %
196196 summarize_weighted_production(scenario , tmsr , smsp , region , name_abcd )
197- # > # A tibble: 9,036 × 10
198- # > sector_a…¹ techn…² year scena…³ tmsr smsp region name_…⁴ weigh…⁵ weigh…⁶
199- # > <chr> <chr> <int > <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
200- # > 1 automotive electr… 2020 cps 1 0 global toyota… 324592. 0.0380
201- # > 2 automotive electr… 2020 sds 1 0 global toyota… 324592. 0.0380
202- # > 3 automotive electr… 2020 sps 1 0 global toyota… 324592. 0.0380
203- # > 4 automotive electr… 2021 cps 1.12 0.00108 global toyota… 339656. 0.0393
204- # > 5 automotive electr… 2021 sds 1.16 0.00653 global toyota… 339656. 0.0393
205- # > 6 automotive electr… 2021 sps 1.14 0.00137 global toyota… 339656. 0.0393
206- # > 7 automotive electr… 2022 cps 1.24 0.00213 global toyota… 354720. 0.0406
207- # > 8 automotive electr… 2022 sds 1.32 0.0131 global toyota… 354720. 0.0406
208- # > 9 automotive electr… 2022 sps 1.29 0.00273 global toyota… 354720. 0.0406
209- # > 10 automotive electr… 2023 cps 1.35 0.00316 global toyota… 369784. 0.0419
210- # > # … with 9,026 more rows, and abbreviated variable names ¹sector_abcd,
211- # > # ²technology, ³scenario, ⁴name_abcd, ⁵ weighted_production,
212- # > # ⁶ weighted_technology_share
197+ # > # A tibble: 1,953 × 10
198+ # > sector_abcd technology year scenario tmsr smsp region name_abcd
199+ # > <chr> <chr> <dbl > <chr> <dbl> <dbl> <chr> <chr>
200+ # > 1 automotive electric 2020 cps 1 0 global large automotive co…
201+ # > 2 automotive electric 2020 cps 1 0 global large automotive co…
202+ # > 3 automotive electric 2020 cps 1 0 global large automotive co…
203+ # > 4 automotive electric 2020 cps 1 0 global large hdv company t…
204+ # > 5 automotive electric 2020 sds 1 0 global large automotive co…
205+ # > 6 automotive electric 2020 sds 1 0 global large automotive co…
206+ # > 7 automotive electric 2020 sds 1 0 global large automotive co…
207+ # > 8 automotive electric 2020 sds 1 0 global large hdv company t…
208+ # > 9 automotive electric 2020 sps 1 0 global large automotive co…
209+ # > 10 automotive electric 2020 sps 1 0 global large automotive co…
210+ # > # ℹ 1,943 more rows
211+ # > # ℹ 2 more variables: weighted_production <dbl> ,
212+ # > # weighted_technology_share <dbl>
213213```
214214
215215[ Get
0 commit comments