|
| 1 | +/******************************************************************************* |
| 2 | + * |
| 3 | + * MIT License |
| 4 | + * |
| 5 | + * Copyright (C) 2019-2025 Advanced Micro Devices, Inc. All rights reserved. |
| 6 | + * |
| 7 | + * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 8 | + * of this software and associated documentation files (the "Software"), to deal |
| 9 | + * in the Software without restriction, including without limitation the rights |
| 10 | + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 11 | + * copies of the Software, and to permit persons to whom the Software is |
| 12 | + * furnished to do so, subject to the following conditions: |
| 13 | + * |
| 14 | + * The above copyright notice and this permission notice shall be included in |
| 15 | + * all copies or substantial portions of the Software. |
| 16 | + * |
| 17 | + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 18 | + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 19 | + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 20 | + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 21 | + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 22 | + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 23 | + * SOFTWARE. |
| 24 | + * |
| 25 | + *******************************************************************************/ |
| 26 | + |
| 27 | +#include <stdexcept> |
| 28 | +#include <random> |
| 29 | + |
| 30 | +#include <gtest/gtest.h> |
| 31 | +#include <Tensile/MLPClassification.hpp> |
| 32 | + |
| 33 | +constexpr double abs_error = 10. * std::numeric_limits<TensileLite::MLPClassification::dtype>::epsilon(); |
| 34 | + |
| 35 | +TEST(MLPNet, DenseLayer) |
| 36 | +{ |
| 37 | + using namespace TensileLite; |
| 38 | + using namespace MLPClassification; |
| 39 | + |
| 40 | + DenseLayer test_dense{ |
| 41 | + /* weights */ |
| 42 | + std::vector({0.6634151484170232f, 0.788165180871102f, 0.31248166526753884f, |
| 43 | + 0.23942935302736823f, 0.6809768405365064f, 0.1367808736375885f, |
| 44 | + 0.5374190113071796f, 0.9243177539724999f, 0.2626090032418886f, |
| 45 | + 0.25681768989410403f, 0.9874451518147117f, 0.42539241956479557f}), |
| 46 | + /* bias */ |
| 47 | + std::vector({0.5428595043381658f, 0.17016816526861123f, |
| 48 | + 0.848431351596801f, 0.8236885843811014f}) |
| 49 | + }; |
| 50 | + |
| 51 | + auto Fout = test_dense({0.43858885174024276f, 0.7889586579958023f, 0.6683846141676605f}); |
| 52 | + |
| 53 | + std::vector<dtype> Ftrue({1.6645136731628662f, 0.9038640159734725f, |
| 54 | + 1.9889096507140147f, 1.9997051101391978f}); |
| 55 | + |
| 56 | + for (std::size_t i=0; i<Fout.size(); i++) |
| 57 | + EXPECT_NEAR(Fout[i], Ftrue[i], abs_error); |
| 58 | +} |
| 59 | + |
| 60 | +template <typename T> |
| 61 | +std::vector<T> normal_random_vector(std::size_t n) { |
| 62 | + std::default_random_engine gen; |
| 63 | + std::normal_distribution<T> dist(0., 1.0); |
| 64 | + auto generator = std::bind(dist, gen); |
| 65 | + std::vector<T> v(n); |
| 66 | + std::generate(v.begin(), v.end(), generator); |
| 67 | + return v; |
| 68 | +} |
| 69 | + |
| 70 | +TensileLite::MLPClassification::DenseLayer |
| 71 | +random_dense_layer(std::size_t n_in, std::size_t n_out) { |
| 72 | + using namespace TensileLite; |
| 73 | + using namespace MLPClassification; |
| 74 | + return DenseLayer(normal_random_vector<dtype>(n_in * n_out), |
| 75 | + normal_random_vector<dtype>(n_out)); |
| 76 | +} |
| 77 | + |
| 78 | +TensileLite::MLPClassification::ResBlock |
| 79 | +random_resblock(std::size_t n_in, std::size_t hidden, std::size_t n_out) { |
| 80 | + using namespace TensileLite; |
| 81 | + using namespace MLPClassification; |
| 82 | + ResBlock r; |
| 83 | + r.linear1 = random_dense_layer(n_in, hidden); |
| 84 | + r.linear2 = random_dense_layer(hidden, n_out); |
| 85 | + r.res = random_dense_layer(n_in, n_out); |
| 86 | + return r; |
| 87 | +} |
| 88 | + |
| 89 | +TEST(MLPNet, DenseLayerFixed) |
| 90 | +{ |
| 91 | + using namespace TensileLite; |
| 92 | + using namespace MLPClassification; |
| 93 | + |
| 94 | + /* DenseLayer has some sizes hardcoded for optimization, test these sizes */ |
| 95 | + int n_in = 16, n_out = 3; |
| 96 | + |
| 97 | + auto weights = normal_random_vector<dtype>(n_out*n_in); |
| 98 | + auto bias = normal_random_vector<dtype>(n_out); |
| 99 | + DenseLayer test_dense{weights, bias}; |
| 100 | + // EXPECT_FALSE(std::string(typeid(test_dense.W.get()).name()).find("WeightMatrixFixed") == std::string::npos); |
| 101 | + |
| 102 | + auto Fin = normal_random_vector<dtype>(n_in); |
| 103 | + auto Fout = test_dense(Fin); |
| 104 | + std::vector<dtype> Ftrue(n_out); |
| 105 | + for (int i=0; i<n_out; i++) { |
| 106 | + dtype ftrue = bias[i]; |
| 107 | + for (int j=0; j<n_in; j++) |
| 108 | + ftrue += weights[i*n_in+j] * Fin[j]; |
| 109 | + EXPECT_NEAR(Fout[i], ftrue, abs_error); |
| 110 | + } |
| 111 | +} |
| 112 | + |
| 113 | +TEST(MLPNet, DenseLayerDimFail) |
| 114 | +{ |
| 115 | + using namespace TensileLite; |
| 116 | + using namespace MLPClassification; |
| 117 | + |
| 118 | + /* weights dimension is not a multiple of bias dimension */ |
| 119 | + EXPECT_THROW( |
| 120 | + (DenseLayer{std::vector({1.f, 2.f, 3.f}), std::vector({1.f, 2.f})}), |
| 121 | + std::runtime_error); |
| 122 | +} |
| 123 | + |
| 124 | +TEST(MLPNet, StandardScaler) |
| 125 | +{ |
| 126 | + using namespace TensileLite; |
| 127 | + using namespace MLPClassification; |
| 128 | + |
| 129 | + StandardScaler test_scaler{ |
| 130 | + /* mean */ std::vector{0.4525329262019901f, 0.8647806535129754f}, |
| 131 | + /* scale */ std::vector{0.05201354125426511f, 0.06123320047178044f} |
| 132 | + }; |
| 133 | + |
| 134 | + std::vector Fin{3.991355396203433e-04f, 6.381927186481492e-01f}; |
| 135 | + auto F = Fin; |
| 136 | + test_scaler(F); |
| 137 | + |
| 138 | + for (std::size_t i=0; i<F.size(); i++) |
| 139 | + EXPECT_NEAR(F[i], (Fin[i] - test_scaler.mean[i]) / test_scaler.scale[i], abs_error); |
| 140 | + |
| 141 | + std::vector<dtype> Ftrue({-8.692616956267996f, -3.7004097959774316f}); |
| 142 | + for (std::size_t i=0; i<F.size(); i++) |
| 143 | + EXPECT_NEAR(F[i], Ftrue[i], abs_error); |
| 144 | +} |
| 145 | + |
| 146 | +TEST(MLPNet, ResBlock) |
| 147 | +{ |
| 148 | + using namespace TensileLite; |
| 149 | + using namespace MLPClassification; |
| 150 | + |
| 151 | + int n_in = 3, h = 6, n_out = 5; |
| 152 | + |
| 153 | + ResBlock b = random_resblock(n_in, h, n_out); |
| 154 | + auto Fin = normal_random_vector<dtype>(n_in); |
| 155 | + auto Fout = b(Fin); |
| 156 | + |
| 157 | + auto Ftmp = b.linear1(Fin); |
| 158 | + for (auto& f : Ftmp) |
| 159 | + f = f > 0 ? f : 0.; |
| 160 | + auto Ftrue = b.linear2(Ftmp); |
| 161 | + auto Fres = b.res(Fin); |
| 162 | + for (std::size_t i=0; i<Fres.size(); i++) |
| 163 | + Ftrue[i] += Fres[i]; |
| 164 | + for (auto& f : Ftrue) |
| 165 | + f = f > 0 ? f : 0.; |
| 166 | + |
| 167 | + for (std::size_t i=0; i<Ftrue.size(); i++) |
| 168 | + EXPECT_NEAR(Ftrue[i], Fout[i], abs_error); |
| 169 | +} |
| 170 | + |
| 171 | +TEST(MLPNet, MLPNet) |
| 172 | +{ |
| 173 | + using namespace TensileLite; |
| 174 | + using namespace MLPClassification; |
| 175 | + |
| 176 | + std::size_t n_solutions = 9, n_features = MLPNet::n_features; |
| 177 | + std::size_t h1 = 3, h2 = 5, h3 = 4, h4 = 7; |
| 178 | + |
| 179 | + MLPNet net; |
| 180 | + net.res_blocks.push_back(random_resblock(n_features, h1, h2)); |
| 181 | + net.res_blocks.push_back(random_resblock(h2, h3, h4)); |
| 182 | + net.dense = random_dense_layer(h4, n_solutions); |
| 183 | + net.scaler.mean = std::vector<dtype>(n_features, .7); |
| 184 | + net.scaler.scale = std::vector<dtype>(n_features, 3.6); |
| 185 | + |
| 186 | + EXPECT_TRUE(net.valid()); |
| 187 | + |
| 188 | + std::vector<float> probkey = normal_random_vector<float>(4); |
| 189 | + auto Fout = net.predict(probkey); |
| 190 | + EXPECT_TRUE(Fout.size() == n_solutions); |
| 191 | + |
| 192 | + for (auto fi : Fout) { |
| 193 | + EXPECT_TRUE(std::isfinite(fi)); |
| 194 | + EXPECT_FALSE(std::isnan(fi)); |
| 195 | + } |
| 196 | +} |
0 commit comments