Skip to content

Commit ebbc5b0

Browse files
authored
Merge pull request #2142 from TayTroye/updateDocs
Update docs
2 parents 5e36922 + f63d0fd commit ebbc5b0

File tree

6 files changed

+39
-24
lines changed

6 files changed

+39
-24
lines changed

README.md

Lines changed: 13 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424

2525
RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified,
2626
comprehensive and efficient framework for research purpose.
27-
Our library includes 91 recommendation algorithms, covering four major categories:
27+
Our library includes 94 recommendation algorithms, covering four major categories:
2828

2929
+ General Recommendation
3030
+ Sequential Recommendation
@@ -48,8 +48,8 @@ In order to support the study of recent advances in recommender systems, we cons
4848
+ **General and extensible data structure.** We design general and extensible data structures to unify the formatting and
4949
usage of various recommendation datasets.
5050

51-
+ **Comprehensive benchmark models and datasets.** We implement 78 commonly used recommendation algorithms, and provide
52-
the formatted copies of 28 recommendation datasets.
51+
+ **Comprehensive benchmark models and datasets.** We implement 94 commonly used recommendation algorithms, and provide
52+
the formatted copies of 43 recommendation datasets.
5353

5454
+ **Efficient GPU-accelerated execution.** We optimize the efficiency of our library with a number of improved techniques
5555
oriented to the GPU environment.
@@ -59,9 +59,11 @@ for testing and comparing recommendation algorithms.
5959

6060

6161
## RecBole News
62+
![new](/asset/new.gif) **02/23/2025**: We release RecBole [v1.2.1](https://github.com/RUCAIBox/RecBole/releases/tag/v1.2.1).
63+
6264
![new](/asset/new.gif) **11/01/2023**: We release RecBole [v1.2.0](https://github.com/RUCAIBox/RecBole/releases/tag/v1.2.0).
6365

64-
![new](/asset/new.gif) **11/06/2022**: We release [the optimal hyperparameters of the model and their tuning ranges](https://recbole.io/hyperparameters/index.html).
66+
**11/06/2022**: We release [the optimal hyperparameters of the model and their tuning ranges](https://recbole.io/hyperparameters/index.html).
6567

6668
**10/05/2022**: We release RecBole [v1.1.1](https://github.com/RUCAIBox/RecBole/releases/tag/v1.1.1).
6769

@@ -101,13 +103,13 @@ These extensions make it much easier to reproduce the benchmark results and stay
101103
| Aspect | RecBole 1.0 | RecBole 2.0 | This update |
102104
| :-----------------------: | :--------------------------------: | :----------------------------: | :----------------------------------------------: |
103105
| Recommendation tasks | 4 categories | 3 topics and 5 packages | 4 categories |
104-
| Models and datasets | 73 models and 28 datasets | 65 models and 8 new datasets | 91 models and 43 datasets |
106+
| Models and datasets | 73 models and 28 datasets | 65 models and 8 new datasets | 94 models and 43 datasets |
105107
| Data structure | Implemented Dataset and Dataloader | Task-oriented | Compatible data module inherited from PyTorch |
106108
| Continuous features | Field embedding | Field embedding | Field embedding and discretization |
107109
| GPU-accelerated execution | Single-GPU utilization | Single-GPU utilization | Multi-GPU and mixed precision training |
108110
| Hyper-parameter tuning | Serial gradient search | Serial gradient search | Three search methods in both serial and parallel |
109111
| Significance test | - | - | Available interface |
110-
| Benchmark results | - | Partially public (GNN and CDR) | Benchmark configurations on 82 models |
112+
| Benchmark results | - | Partially public (GNN and CDR) | Benchmark configurations on 94 models |
111113
| Friendly usage | Documentation | Documentation | Improved documentation and FAQ page |
112114

113115

@@ -249,6 +251,7 @@ We will keep improving our implementations, and update these test results.
249251
## RecBole Major Releases
250252
| Releases | Date |
251253
|----------|------------|
254+
| v1.2.1 | 02/23/2025 |
252255
| v1.2.0 | 11/01/2023 |
253256
| v1.1.1 | 10/05/2022 |
254257
| v1.0.0 | 09/17/2021 |
@@ -293,7 +296,7 @@ We thank the nice contributions through PRs from [@rowedenny](https://github.com
293296

294297

295298
## Cite
296-
If you find RecBole useful for your research or development, please cite the following papers: [RecBole[1.0]](https://arxiv.org/abs/2011.01731), [RecBole[2.0]](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) and [RecBole[1.2.0]](https://dl.acm.org/doi/10.1145/3539618.3591889).
299+
If you find RecBole useful for your research or development, please cite the following papers: [RecBole[1.0]](https://arxiv.org/abs/2011.01731), [RecBole[2.0]](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) and [RecBole[1.2.1]](https://dl.acm.org/doi/10.1145/3539618.3591889).
297300

298301
```bibtex
299302
@inproceedings{recbole[1.0],
@@ -312,7 +315,7 @@ If you find RecBole useful for your research or development, please cite the fol
312315
publisher = {{ACM}},
313316
year = {2022}
314317
}
315-
@inproceedings{recbole[1.2.0],
318+
@inproceedings{recbole[1.2.1],
316319
author = {Lanling Xu and Zhen Tian and Gaowei Zhang and Junjie Zhang and Lei Wang and Bowen Zheng and Yifan Li and Jiakai Tang and Zeyu Zhang and Yupeng Hou and Xingyu Pan and Wayne Xin Zhao and Xu Chen and Ji{-}Rong Wen},
317320
title = {Towards a More User-Friendly and Easy-to-Use Benchmark Library for Recommender Systems},
318321
booktitle = {{SIGIR}},
@@ -334,7 +337,8 @@ Here is the list of our lead developers in each development phase. They are the
334337
| June 2020<br> ~<br> Nov. 2020 | v0.1.1 | Shanlei Mu ([@ShanleiMu](https://github.com/ShanleiMu)), Yupeng Hou ([@hyp1231](https://github.com/hyp1231)),<br> Zihan Lin ([@linzihan-backforward](https://github.com/linzihan-backforward)), Kaiyuan Li ([@tsotfsk](https://github.com/tsotfsk))| [PDF](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) |
335338
| Nov. 2020<br> ~ <br> Jul. 2022 | v0.1.2 ~ v1.0.1 | Yushuo Chen ([@chenyushuo](https://github.com/chenyushuo)), Xingyu Pan ([@2017pxy](https://github.com/2017pxy)) | [PDF](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) |
336339
| Jul. 2022<br/> ~ <br/> Nov. 2023 | v1.1.0 ~ v1.1.1 | Lanling Xu ([@Sherry-XLL](https://github.com/Sherry-XLL)), Zhen Tian ([@chenyuwuxin](https://github.com/chenyuwuxin)), Gaowei Zhang ([@Wicknight](https://github.com/Wicknight)), Lei Wang ([@Paitesanshi](https://github.com/Paitesanshi)), Junjie Zhang ([@leoleojie](https://github.com/leoleojie)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
337-
| Nov. 2023<br/> ~ <br/> now | v1.2.0 | Bowen Zheng ([@zhengbw0324](https://github.com/zhengbw0324)), Chen Ma ([@Yilu114](https://github.com/Yilu114)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
340+
| Nov. 2023<br/> ~ <br/> Feb. 2025 | v1.2.0 | Bowen Zheng ([@zhengbw0324](https://github.com/zhengbw0324)), Chen Ma ([@Yilu114](https://github.com/Yilu114)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
341+
| Feb. 2025<br/> ~ <br/> now | v1.2.1 | Enze Liu ([@BishopLiu](https://github.com/BishopLiu)), Kesha Ou ([@TayTroye](https://github.com/TayTroye)), Bingqian Li ([@Fotiligner](https://github.com/Fotiligner)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
338342

339343

340344
## License

README_CN.md

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424

2525

2626
RecBole 是一个基于 PyTorch 实现的,面向研究者的,易于开发与复现的,统一、全面、高效的推荐系统代码库。
27-
我们实现了91个推荐系统模型,包含常见的推荐系统类别,如:
27+
我们实现了94个推荐系统模型,包含常见的推荐系统类别,如:
2828

2929
+ General Recommendation
3030
+ Sequential Recommendation
@@ -46,17 +46,19 @@ RecBole 是一个基于 PyTorch 实现的,面向研究者的,易于开发与
4646
## 特色
4747
+ **通用和可扩展的数据结构** 我们设计了通用和可扩展的数据结构来支持各种推荐数据集统一化格式和使用。
4848

49-
+ **全面的基准模型和数据集** 我们实现了91个常用的推荐算法,并提供了43个推荐数据集的格式化副本。
49+
+ **全面的基准模型和数据集** 我们实现了94个常用的推荐算法,并提供了43个推荐数据集的格式化副本。
5050

5151
+ **高效的 GPU 加速实现** 我们针对GPU环境使用了一系列的优化技术来提升代码库的效率。
5252

5353
+ **大规模的标准评测** 我们支持一系列被广泛认可的评估方式来测试和比较不同的推荐算法。
5454

5555

5656
## RecBole 新闻
57+
![new](/asset/new.gif) **02/23/2025**: 我们发布了 [v1.2.1](https://github.com/RUCAIBox/RecBole/releases/tag/v1.2.1).
58+
5759
![new](/asset/new.gif) **11/01/2023**: 我们发布了 [v1.2.0](https://github.com/RUCAIBox/RecBole/releases/tag/v1.2.0).
5860

59-
![new](/asset/new.gif) **11/06/2022**: 我们公开了[模型的最优超参数及其调参范围](https://recbole.io/hyperparameters/index.html).
61+
**11/06/2022**: 我们公开了[模型的最优超参数及其调参范围](https://recbole.io/hyperparameters/index.html).
6062

6163
**10/05/2022**: 我们发布了 [v1.1.1](https://github.com/RUCAIBox/RecBole/releases/tag/v1.1.1).
6264

@@ -225,6 +227,7 @@ NOTE: 我们的测试结果只给出了RecBole库中实现模型的大致时间
225227
## RecBole 重要发布
226228
| Releases | Date |
227229
|----------|------------|
230+
| v1.2.1 | 02/23/2023 |
228231
| v1.2.0 | 11/01/2023 |
229232
| v1.1.1 | 10/05/2022 |
230233
| v1.0.0 | 09/17/2021 |
@@ -269,7 +272,7 @@ NOTE: 我们的测试结果只给出了RecBole库中实现模型的大致时间
269272

270273

271274
## 引用
272-
如果你觉得 RecBole 对你的科研工作有帮助,请引用我们的论文:[RecBole[1.0]](https://arxiv.org/abs/2011.01731)[RecBole[2.0]](https://dl.acm.org/doi/abs/10.1145/3459637.3482016)[RecBole[1.2.0]](https://dl.acm.org/doi/10.1145/3539618.3591889)
275+
如果你觉得 RecBole 对你的科研工作有帮助,请引用我们的论文:[RecBole[1.0]](https://arxiv.org/abs/2011.01731)[RecBole[2.0]](https://dl.acm.org/doi/abs/10.1145/3459637.3482016)[RecBole[1.2.1]](https://dl.acm.org/doi/10.1145/3539618.3591889)
273276

274277
```bibtex
275278
@inproceedings{recbole[1.0],
@@ -288,14 +291,15 @@ NOTE: 我们的测试结果只给出了RecBole库中实现模型的大致时间
288291
publisher = {{ACM}},
289292
year = {2022}
290293
}
291-
@inproceedings{recbole[1.2.0],
294+
@inproceedings{recbole[1.2.1],
292295
author = {Lanling Xu and Zhen Tian and Gaowei Zhang and Junjie Zhang and Lei Wang and Bowen Zheng and Yifan Li and Jiakai Tang and Zeyu Zhang and Yupeng Hou and Xingyu Pan and Wayne Xin Zhao and Xu Chen and Ji{-}Rong Wen},
293296
title = {Towards a More User-Friendly and Easy-to-Use Benchmark Library for Recommender Systems},
294297
booktitle = {{SIGIR}},
295298
pages = {2837--2847},
296299
publisher = {{ACM}},
297300
year = {2023}
298301
}
302+
299303
```
300304

301305

@@ -309,7 +313,10 @@ RecBole由 [中国人民大学, 北京邮电大学, 华东师范大学](https://
309313
| 2020年6月<br> ~<br> 2020年11月 | v0.1.1 | 牟善磊 ([@ShanleiMu](https://github.com/ShanleiMu)), 侯宇蓬 ([@hyp1231](https://github.com/@hyp1231)),<br> 林子涵 ([@linzihan-backforward](https://github.com/linzihan-backforward)), 李凯元 ([@tsotfsk](https://github.com/tsotfsk))| [PDF](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) |
310314
| 2020年11月<br> ~ <br> 2022年7月 | v0.1.2 ~ v1.0.1 | 陈昱硕 ([@chenyushuo](https://github.com/https://github.com/chenyushuo)), 潘星宇 ([@2017pxy](https://github.com/2017pxy)) | [PDF](https://dl.acm.org/doi/abs/10.1145/3459637.3482016) |
311315
| 2022年7月<br/> ~ <br/> 2023年11月 | v1.1.0 ~ v1.1.1 | 徐澜玲 ([@Sherry-XLL](https://github.com/Sherry-XLL)), 田震 ([@chenyuwuxin](https://github.com/chenyuwuxin)), 张高玮 ([@Wicknight](https://github.com/Wicknight)), 王磊 ([@Paitesanshi](https://github.com/Paitesanshi)), 张君杰 ([@leoleojie](https://github.com/leoleojie)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
312-
| 2023年11月<br/> ~ <br/> 现在 | v1.2.0 | 郑博文 ([@zhengbw0324](https://github.com/zhengbw0324)), 马辰 ([@Yilu114](https://github.com/Yilu114)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
316+
| 2023年11月<br/> ~ <br/> 2025年2月 | v1.2.0 | 郑博文 ([@zhengbw0324](https://github.com/zhengbw0324)), 马辰 ([@Yilu114](https://github.com/Yilu114)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
317+
| 2025年2月<br/> ~ <br/> 现在 | v1.2.1 | 刘恩泽 ([@BishopLiu](https://github.com/BishopLiu)), 欧柯杉 ([@TayTroye](https://github.com/TayTroye)), 李炳黔 ([@Fotiligner](https://github.com/Fotiligner)) | [PDF](https://dl.acm.org/doi/10.1145/3539618.3591889) |
318+
319+
313320

314321
## 免责声明
315322
RecBole 基于 [MIT License](./LICENSE) 进行开发,本项目的所有数据和代码只能被用于学术目的。

docs/source/conf.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,11 @@
2020
# -- Project information -----------------------------------------------------
2121

2222
project = "RecBole"
23-
copyright = "2020-2023, RecBole Contributors"
23+
copyright = "2020-2025, RecBole Contributors"
2424
author = "AIBox RecBole group"
2525

2626
# The full version, including alpha/beta/rc tags
27-
release = "1.2.0"
27+
release = "1.2.1"
2828

2929

3030
# -- General configuration ---------------------------------------------------

docs/source/index.rst

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
11
.. RecBole documentation master file.
2-
.. title:: RecBole v1.2.0
2+
.. title:: RecBole v1.2.1
33
.. image:: asset/logo.png
44

55
=========================================================
66

7-
`HomePage <https://recbole.io/>`_ | `Docs <https://recbole.io/docs/>`_ | `GitHub <https://github.com/RUCAIBox/RecBole>`_ | `Datasets <https://github.com/RUCAIBox/RecDatasets>`_ | `v0.1.2 </docs/v0.1.2/>`_ | `v0.2.0 </docs/v0.2.0/>`_ | `v1.0.0 </docs/v1.0.0/>`_ | `v1.0.1 </docs/v1.0.1/>`_ | `v1.1.1 </docs/v1.1.1/>`_
7+
`HomePage <https://recbole.io/>`_ | `Docs <https://recbole.io/docs/>`_ | `GitHub <https://github.com/RUCAIBox/RecBole>`_ | `Datasets <https://github.com/RUCAIBox/RecDatasets>`_ | `v0.1.2 </docs/v0.1.2/>`_ | `v0.2.0 </docs/v0.2.0/>`_ | `v1.0.0 </docs/v1.0.0/>`_ | `v1.0.1 </docs/v1.0.1/>`_ | `v1.1.1 </docs/v1.1.1/>`_ | `v1.2.0 </docs/v1.2.0/>`_
88

99
Introduction
1010
-------------------------
1111
RecBole is a unified, comprehensive and efficient framework developed based on PyTorch.
1212
It aims to help the researchers to reproduce and develop recommendation models.
1313

14-
In the lastest release, our library includes 91 recommendation algorithms `[Model List]`_, covering four major categories:
14+
In the lastest release, our library includes 94 recommendation algorithms `[Model List]`_, covering four major categories:
1515

1616
- General Recommendation
1717
- Sequential Recommendation
@@ -29,7 +29,7 @@ Features:
2929
- General and extensible data structure
3030
We deign general and extensible data structures to unify the formatting and usage of various recommendation datasets.
3131
- Comprehensive benchmark models and datasets
32-
We implement 91 commonly used recommendation algorithms, and provide the formatted copies of 43 recommendation datasets.
32+
We implement 94 commonly used recommendation algorithms, and provide the formatted copies of 43 recommendation datasets.
3333
- Efficient GPU-accelerated execution
3434
We design many tailored strategies in the GPU environment to enhance the efficiency of our library.
3535
- Extensive and standard evaluation protocols
@@ -102,7 +102,8 @@ Time Version Lead Developers
102102
June 2020 ~ Nov. 2020 v0.1.1 `Shanlei Mu <https://github.com/ShanleiMu>`_, `Yupeng Hou <https://github.com/hyp1231>`_, `Zihan Lin <https://github.com/linzihan-backforward>`_, `Kaiyuan Li <https://github.com/tsotfsk>`_
103103
Nov. 2020 ~ Oct. 2022 v0.1.2 ~ v1.0.1 `Yushuo Chen <https://github.com/chenyushuo>`_, `Xingyu Pan <https://github.com/2017pxy>`_
104104
Oct. 2022 ~ Nov. 2023 v1.1.0 ~ v1.1.1 `Lanling Xu <https://github.com/Sherry-XLL>`_, `Zhen Tian <https://github.com/chenyuwuxin>`_, `Gaowei Zhang <https://github.com/Wicknight>`_, `Lei Wang <https://github.com/Paitesanshi>`_, `Junjie Zhang <https://github.com/leoleojie>`_
105-
Nov. 2023 ~ now v1.2.0 `Bowen Zheng <https://github.com/zhengbw0324>`_, `Chen Ma <https://github.com/Yilu114>`_
105+
Nov. 2023 ~ Feb. 2025 v1.2.0 `Bowen Zheng <https://github.com/zhengbw0324>`_, `Chen Ma <https://github.com/Yilu114>`_
106+
Feb. 2025 ~ Now v1.2.1 `Enze Liu <https://github.com/BishopLiu>`_, `Kesha Ou <https://github.com/TayTroye>`_, `Bingqian Li <https://github.com/Fotiligner>`_
106107
====================== =============== =============================================
107108

108109
License

docs/source/user_guide/model_intro.rst

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
Model Introduction
22
=====================
3-
We implement 91 recommendation models covering general recommendation, sequential recommendation,
3+
We implement 94 recommendation models covering general recommendation, sequential recommendation,
44
context-aware recommendation and knowledge-based recommendation. A brief introduction to these models are as follows:
55

66

@@ -117,6 +117,8 @@ the sequential data. The models of session-based recommendation are also include
117117
model/sequential/sine
118118
model/sequential/core
119119
model/sequential/fearec
120+
model/sequential/sasreccpr
121+
model/sequential/gru4reccpr
120122

121123

122124
Knowledge-based Recommendation

recbole/model/general_recommender/asymknn.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@
33
import torch
44
from recbole.model.abstract_recommender import GeneralRecommender
55
from recbole.utils import InputType, ModelType
6+
from scipy.sparse import csr_matrix
67

78

89
class ComputeSimilarity:
@@ -211,7 +212,7 @@ def __init__(self, config, dataset):
211212
)
212213
denominator = factor1.dot(factor2.T) + 1e-6
213214

214-
self.pred_mat = (nominator / denominator).tolil()
215+
self.pred_mat = csr_matrix(nominator / denominator).tolil()
215216

216217
# Apply 'locality of scoring function' via q: f(w) = w^q
217218
self.pred_mat = self.pred_mat.power(self.q)

0 commit comments

Comments
 (0)