-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
Best regressions I've found so far for England and for the whole of the UK. Years picked for change_since are chosen by a for loop. Details in source, but it's pretty simple.
England benefits from IMD data slightly, but also just from excluding the other areas:
# ipython -i brellenge_prep.py
# bestEng = smf.ols('Pct_Remain ~ Q("White British") + Q("White Other") + Asian + Black + Other + y2015_WBR + IMD', data=change_since(2016, 2001).join(metadata))
# bestUK = smf.ols('Pct_Remain ~ Q("White British") + Q("White Other") + Asian + Black + Other + y2015_WBR', data=change_since(2017, 2003).join(metadata))
In [1]: bestEng.fit().summary2()
Out[1]:
<class 'statsmodels.iolib.summary2.Summary'>
"""
Results: Ordinary least squares
======================================================================
Model: OLS Adj. R-squared: 0.624
Dependent Variable: Pct_Remain AIC: 2109.8669
Date: 2018-03-04 15:19 BIC: 2140.1375
No. Observations: 325 Log-Likelihood: -1046.9
Df Model: 7 F-statistic: 77.81
Df Residuals: 317 Prob (F-statistic): 4.59e-65
R-squared: 0.632 Scale: 37.702
----------------------------------------------------------------------
Coef. Std.Err. t P>|t| [0.025 0.975]
----------------------------------------------------------------------
Intercept 123.1056 14.3254 8.5935 0.0000 94.9207 151.2905
Q("White British") -65.0829 19.6060 -3.3195 0.0010 -103.6572 -26.5086
Q("White Other") 9.7304 4.2564 2.2861 0.0229 1.3561 18.1046
Asian -9.4880 2.8771 -3.2977 0.0011 -15.1487 -3.8273
Black 46.3033 4.4566 10.3899 0.0000 37.5351 55.0715
Other -0.8730 4.9839 -0.1752 0.8611 -10.6786 8.9326
y2015_WBR -48.5744 18.5010 -2.6255 0.0091 -84.9746 -12.1742
IMD 1.4646 0.2204 6.6449 0.0000 1.0310 1.8983
----------------------------------------------------------------------
Omnibus: 12.016 Durbin-Watson: 1.845
Prob(Omnibus): 0.002 Jarque-Bera (JB): 12.578
Skew: 0.418 Prob(JB): 0.002
Kurtosis: 3.478 Condition No.: 572
======================================================================
"""
In [2]: bestUK.fit().summary2()
Out[2]:
<class 'statsmodels.iolib.summary2.Summary'>
"""
Results: Ordinary least squares
=====================================================================
Model: OLS Adj. R-squared: 0.547
Dependent Variable: Pct_Remain AIC: 2300.3152
Date: 2018-03-04 15:19 BIC: 2327.2605
No. Observations: 347 Log-Likelihood: -1143.2
Df Model: 6 F-statistic: 70.53
Df Residuals: 340 Prob (F-statistic): 9.16e-57
R-squared: 0.555 Scale: 43.437
---------------------------------------------------------------------
Coef. Std.Err. t P>|t| [0.025 0.975]
---------------------------------------------------------------------
Intercept 119.1428 13.0029 9.1628 0.0000 93.5666 144.7191
Q("White British") -55.5533 20.2003 -2.7501 0.0063 -95.2866 -15.8199
Q("White Other") 30.5484 3.9682 7.6984 0.0000 22.7432 38.3537
Asian -9.0141 2.6544 -3.3959 0.0008 -14.2351 -3.7930
Black 24.8085 3.5454 6.9974 0.0000 17.8348 31.7822
Other 4.5733 4.9236 0.9289 0.3536 -5.1112 14.2578
y2015_WBR -35.2234 15.8739 -2.2190 0.0271 -66.4467 -4.0000
---------------------------------------------------------------------
Omnibus: 3.247 Durbin-Watson: 1.823
Prob(Omnibus): 0.197 Jarque-Bera (JB): 2.962
Skew: 0.207 Prob(JB): 0.227
Kurtosis: 3.181 Condition No.: 148
=====================================================================
"""Metadata
Metadata
Assignees
Labels
No labels