-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRegresion.py
39 lines (33 loc) · 1.37 KB
/
Regresion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
import keras as ks
def regresion(x):
input = pd.DataFrame()
input = x.iloc[:,0:20]
output = pd.DataFrame()
output = x.iloc[:,20]
x_traind, y_traind = input[:10000], output[:10000]
x_testd , y_testd = input[10000:], output[10000:]
x_train , y_train = x_traind.values, y_traind.values
x_test, y_test = x_testd.values, y_testd.values
model = ks.models.Sequential()
model.add(ks.layers.Dense(10,input_shape=(20,),activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(10,activation='tanh'))
model.add(ks.layers.Dense(1,activation='tanh'))
model.compile(loss='mae', optimizer='sgd')
print('Training -----------')
for step in range(20001):
cost = model.train_on_batch(x_train, y_train)
if step % 400 == 0:
print('train cost: ', cost)
print('\nTesting ------------')
cost = model.evaluate(x_test, y_test, batch_size=40)
print('test cost:', cost)