-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogram.py
247 lines (187 loc) · 7.71 KB
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import tkinter as tk
import pandas as pd
import time
from textblob import TextBlob
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
# Function to classify sentiment using Naive Bayes
def classify_sentiment_nb():
start_time = time.time() # Start time
review_text = name.get()
cleaned_review = preprocess_review(review_text)
prediction = nb_model.predict(vectorizer.transform([cleaned_review]))[0]
if prediction == "Positive":
sentiment = "Positive"
else:
sentiment = "Negative"
end_time = time.time() # End time
processing_time = end_time - start_time # Processing time
accuracy = nb_model.score(X_test, y_test) # Accuracy
greeting = f"The sentiment of your review (Naive Bayes) is {sentiment}, value: {prediction}\n"
greeting += f"Processing Time: {processing_time:.4f} seconds\n"
greeting += f"Accuracy: {accuracy:.2f}"
greeting_label_nb.config(text=greeting)
# Function to classify sentiment using Random Forest
def classify_sentiment_rf():
start_time = time.time() # Start time
review_text = name.get()
cleaned_review = preprocess_review(review_text)
prediction = rf_model.predict(vectorizer.transform([cleaned_review]))[0]
if prediction == "Positive":
sentiment = "Positive"
else:
sentiment = "Negative"
end_time = time.time() # End time
processing_time = end_time - start_time # Processing time
accuracy = rf_model.score(X_test, y_test) # Accuracy
greeting = f"The sentiment of your review (Random Forest) is {sentiment}, value: {prediction}\n"
greeting += f"Processing Time: {processing_time:.4f} seconds\n"
greeting += f"Accuracy: {accuracy:.2f}"
greeting_label_rf.config(text=greeting)
# Function to classify sentiment using Logistic Regression
def classify_sentiment_lr():
start_time = time.time() # Start time
review_text = name.get()
cleaned_review = preprocess_review(review_text)
prediction = lr_model.predict(vectorizer.transform([cleaned_review]))[0]
if prediction == "Positive":
sentiment = "Positive"
else:
sentiment = "Negative"
end_time = time.time() # End time
processing_time = end_time - start_time # Processing time
accuracy = lr_model.score(X_test, y_test) # Accuracy
greeting = f"The sentiment of your review (Logistic Regression) is {sentiment}, value: {prediction}\n"
greeting += f"Processing Time: {processing_time:.4f} seconds\n"
greeting += f"Accuracy: {accuracy:.2f}"
greeting_label_lr.config(text=greeting)
# Analisis sentimen teks
def classify_sentiment():
start_time = time.time() # Memulai pengukuran waktu
review_text = name.get()
cleaned_review = preprocess_review(review_text)
prediction = model.predict(vectorizer.transform([cleaned_review]))[0]
if prediction == "Positive":
sentiment = "Positive"
else:
sentiment = "Negative"
end_time = time.time() # Mengakhiri pengukuran waktu
processing_time = end_time - start_time # Menghitung waktu pemrosesan
accuracy = model.score(X_test, y_test) # Menghitung akurasi prediksi
greeting = f"The sentiment of your review is {sentiment}, value : {prediction}\n"
greeting += f"Processing Time: {processing_time:.4f} seconds\n"
greeting += f"Accuracy: {accuracy:.2f}"
greeting_label.config(text=greeting)
# Preprocessing
def preprocess_review(review):
# Case-Folding: Mengubah teks menjadi lowercase
review = review.lower()
# Menghapus simbol & angka, menghapus whitespaces, dan mengubah apostrophe/short word
cleaned_tokens = []
for token in TextBlob(review).words:
clean_token = "".join(e for e in token if e.isalpha() or e in ["'", "-"])
if clean_token:
clean_token = clean_token.strip()
corrections = {
"'s": " is",
"'re": " are",
"'ll": " will",
"'ve": " have",
"'d": " would",
"n't": " not",
}
clean_token = corrections.get(clean_token, clean_token)
cleaned_tokens.append(clean_token)
# Tokenisasi: Memisahkan teks menjadi kata-kata
tokens = word_tokenize(" ".join(cleaned_tokens))
# Stopwords Removal: Menghapus kata-kata yang tidak memiliki makna (stopwords)
stop_words = set(stopwords.words("english"))
tokens = [word for word in tokens if word not in stop_words]
# Lemmatization: Mengubah kata-kata menjadi bentuk dasarnya
lemmatizer = WordNetLemmatizer()
tokens = [lemmatizer.lemmatize(word) for word in tokens]
# Mengembalikan teks yang telah dipreproses dalam bentuk string
return " ".join(tokens)
# Reset
def clear_input():
name.delete(0, tk.END)
greeting_label.config(text="")
greeting_label_nb.config(text="")
greeting_label_rf.config(text="")
greeting_label_lr.config(text="")
# Memuat data latih dari file CSV
data = pd.read_csv("hasil_preprocessing_new.csv")
# Menggunakan kolom "Processed_Review" sebagai teks ulasan
reviews = data["Processed_Review"].values
# Menggunakan kolom "Sentiment_Label" sebagai label sentimen
labels = data["Sentiment_Label"].values
# Menggunakan TfidfVectorizer
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(reviews)
# Membagi dataset menjadi data latih dan data uji
X_train, X_test, y_train, y_test = train_test_split(
X, labels, test_size=0.2, random_state=42
)
# Train model KNN
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
# Naive Bayes model
nb_model = MultinomialNB()
nb_model.fit(X_train, y_train)
# Random Forest model
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)
# Logistic Regression model
lr_model = LogisticRegression(max_iter=1000)
lr_model.fit(X_train, y_train)
# Membuat window
root = tk.Tk()
root.title("Project Styx")
# Membuat label
instruction_label = tk.Label(root, text="Enter Your Review :")
instruction_label.pack()
# Membuat input
name = tk.Entry(root)
name.pack()
# Membuat tombol
button_analisis = tk.Button(root, text="Analyze (KNN)", command=classify_sentiment)
button_analisis.pack()
# Button for Naive Bayes analysis
button_analisis_nb = tk.Button(
root, text="Analyze (Naive Bayes)", command=classify_sentiment_nb
)
button_analisis_nb.pack()
# Button for Random Forest analysis
button_analisis_rf = tk.Button(
root, text="Analyze (Random Forest)", command=classify_sentiment_rf
)
button_analisis_rf.pack()
# Button for Logistic Regression analysis
button_analisis_lr = tk.Button(
root, text="Analyze (Logistic Regression)", command=classify_sentiment_lr
)
button_analisis_lr.pack()
# Membuat tombol reset
button_reset = tk.Button(root, text="Clear", command=clear_input)
button_reset.pack()
# Membuat label untuk hasil
greeting_label = tk.Label(root, text="")
greeting_label.pack()
# Label for Naive Bayes result
greeting_label_nb = tk.Label(root, text="")
greeting_label_nb.pack()
# Label for Random Forest result
greeting_label_rf = tk.Label(root, text="")
greeting_label_rf.pack()
# Label for Logistic Regression result
greeting_label_lr = tk.Label(root, text="")
greeting_label_lr.pack()
# Menjalankan aplikasi
root.mainloop()