-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathjira_search.py
963 lines (841 loc) · 36.2 KB
/
jira_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
"""
title: Jira Search
description: This tool allows you to search issues from Jira.
repository: https://github.com/RomainNeup/open-webui-utilities
author: @romainneup
author_url: https://github.com/RomainNeup
funding_url: https://github.com/sponsors/RomainNeup
requirements: markdownify, sentence-transformers, numpy, rank_bm25, scikit-learn
version: 0.3.0
changelog:
- 0.0.1 - Initial code base.
- 0.0.2 - Implement Jira search
- 0.1.0 - Add support for Personal Access Token authentication and user settings
- 0.1.1 - Limit setting for search results
- 0.1.2 - Add terms splitting option
- 0.2.0 - Add setting for SSL verification
- 0.3.0 - Implement RAG (Retrieval Augmented Generation) for better search results
"""
import base64
import json
import os
import asyncio
import numpy as np
from enum import Enum
from typing import Any, Awaitable, Callable, Dict, List, Optional, Iterable
from dataclasses import dataclass
import requests
from pydantic import BaseModel, Field
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
from sklearn.neighbors import NearestNeighbors
# Get environment variables
DEFAULT_EMBEDDING_MODEL = os.environ.get(
"RAG_EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2"
)
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = (
os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "True").lower() == "true"
)
DEFAULT_CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1000"))
DEFAULT_CHUNK_OVERLAP = int(os.environ.get("CHUNK_OVERLAP", "100"))
DEFAULT_TOP_K = int(os.environ.get("RAG_TOP_K", "3"))
DEFAULT_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0"))
ENABLE_HYBRID_SEARCH = os.environ.get("ENABLE_RAG_HYBRID_SEARCH", "").lower() == "true"
RAG_FULL_CONTEXT = os.environ.get("RAG_FULL_CONTEXT", "False").lower() == "true"
# Memory management settings
MAX_ISSUE_SIZE = int(os.environ.get("RAG_FILE_MAX_SIZE", "10000"))
BATCH_SIZE = int(os.environ.get("RAG_FILE_MAX_COUNT", "16"))
# Read cache dir from environment
CACHE_DIR = os.environ.get("CACHE_DIR", "/tmp/cache")
DEFAULT_MODEL_CACHE_DIR = os.path.join(CACHE_DIR, "sentence_transformers")
# Additional constant values
DEFAULT_RRF_CONSTANT = 60
DEFAULT_DUPLICATE_THRESHOLD = 0.95
DEFAULT_BM25_K = 4
DEFAULT_SIMILARITY_FALLBACK = 0.0
# Field validation constraints
CHUNK_SIZE_MIN = 5
CHUNK_SIZE_MAX = 100000
CHUNK_OVERLAP_MIN = 0
CHUNK_OVERLAP_MAX = 1000
MAX_RESULTS_MIN = 1
SIMILARITY_SCORE_MIN = 0.0
SIMILARITY_SCORE_MAX = 1.0
MAX_ISSUE_SIZE_MIN = 1000
MAX_ISSUE_SIZE_MAX = 1000000
BATCH_SIZE_MIN = 1
BATCH_SIZE_MAX = 100
class EventEmitter:
def __init__(self, event_emitter: Callable[[dict], Awaitable[None]]):
self.event_emitter = event_emitter
pass
async def emit_status(self, description: str, done: bool, error: bool = False):
await self.event_emitter(
{
"data": {
"description": f"{done and (error and '❌' or '✅') or '🔎'} {description}",
"status": done and "complete" or "in_progress",
"done": done,
},
"type": "status",
}
)
async def emit_message(self, content: str):
await self.event_emitter({"data": {"content": content}, "type": "message"})
async def emit_source(self, name: str, url: str, content: str, html: bool = False):
await self.event_emitter(
{
"type": "citation",
"data": {
"document": [content],
"metadata": [{"source": url, "html": html}],
"source": {"name": name},
},
}
)
@dataclass
class Document:
"""Simple document class to store issue content and metadata"""
issue_content: str
metadata: Dict
class TextSplitter:
"""Text splitter for chunking Jira issues into manageable sections"""
def __init__(
self,
chunk_size: int = DEFAULT_CHUNK_SIZE,
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def split_text(self, text: str) -> List[str]:
"""Split text into chunks with overlap for better context preservation"""
if not text:
return []
# Check for extremely large text and enforce hard limit
text_length = len(text)
if text_length > MAX_ISSUE_SIZE:
text_length = MAX_ISSUE_SIZE
text = text[:MAX_ISSUE_SIZE] # Truncate text to hard limit
chunks = []
start = 0
# Process text in smaller windows to reduce memory pressure
while start < text_length:
# Calculate window end with extra margin for finding good break points
window_end = min(start + self.chunk_size + 100, text_length)
window = text[start:window_end]
# Find actual chunk end with good break point
chunk_end = min(self.chunk_size, len(window))
if chunk_end < len(window):
# Look for good break points
search_start = max(self.chunk_overlap, chunk_end - 50)
for i in range(chunk_end, search_start, -1):
if i < len(window) and window[i - 1 : i] in [".", "!", "?", "\n"]:
chunk_end = i
break
# Extract chunk from window
chunk = window[:chunk_end]
chunks.append(chunk)
# Update start position for next window
# Ensure we always make progress by advancing at least 1 character
# This prevents infinite loops when chunk_end ≤ chunk_overlap
progress = max(1, chunk_end - self.chunk_overlap)
start += progress
# Explicitly clean up the window variable
window = None
return chunks
async def split_documents(
self, documents: List[Document], event_emitter: EventEmitter
) -> List[Document]:
"""Split documents into chunks while preserving metadata"""
chunked_documents = []
done = 0
for doc in documents:
await event_emitter.emit_status(
f"Breaking down issue {done+1}/{len(documents)} for better analysis",
False,
)
done += 1
chunks = self.split_text(doc.issue_content)
metadata = dict(doc.metadata)
for chunk in chunks:
chunked_documents.append(
Document(issue_content=chunk, metadata=metadata)
)
return chunked_documents
def cosine_similarity(X, Y) -> np.ndarray:
"""Calculate similarity between matrices X and Y"""
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f"Number of columns in X and Y must be the same. X has shape {X.shape} "
f"and Y has shape {Y.shape}."
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = (
DEFAULT_SIMILARITY_FALLBACK
)
return similarity
def filter_similar_embeddings(
embedded_documents: List[List[float]], similarity_fn: Callable, threshold: float
) -> List[int]:
"""Filter out redundant documents that are too similar to each other"""
similarity = np.tril(similarity_fn(embedded_documents, embedded_documents), k=-1)
redundant = np.where(similarity > threshold)
redundant_stacked = np.column_stack(redundant)
redundant_sorted = np.argsort(similarity[redundant])[::-1]
included_idxs = set(range(len(embedded_documents)))
for first_idx, second_idx in redundant_stacked[redundant_sorted]:
if first_idx in included_idxs and second_idx in included_idxs:
# Default to dropping the second document of any highly similar pair.
included_idxs.remove(second_idx)
return list(sorted(included_idxs))
class DenseRetriever:
"""Semantic search using document embeddings"""
def __init__(
self,
embedding_model: SentenceTransformer,
num_results: int = DEFAULT_TOP_K,
similarity_threshold: float = DEFAULT_RELEVANCE_THRESHOLD,
batch_size: int = BATCH_SIZE,
):
self.embedding_model = embedding_model
self.num_results = num_results
self.similarity_threshold = similarity_threshold
self.batch_size = batch_size
self.knn = None
self.documents = None
self.document_embeddings = None
def add_documents(self, documents: List[Document]):
"""Process documents and prepare embeddings for search"""
self.documents = documents
# Process documents in batches to avoid memory issues
all_embeddings = []
for i in range(0, len(documents), self.batch_size):
batch = documents[i : i + self.batch_size]
batch_texts = [doc.issue_content for doc in batch]
batch_embeddings = self.embedding_model.encode(batch_texts)
all_embeddings.append(batch_embeddings)
# Concatenate all batches
self.document_embeddings = (
np.vstack(all_embeddings) if all_embeddings else np.array([])
)
# Create KNN index
self.knn = NearestNeighbors(n_neighbors=min(self.num_results, len(documents)))
if len(self.document_embeddings) > 0:
self.knn.fit(self.document_embeddings)
def get_relevant_documents(self, query: str) -> List[Document]:
"""Find documents most relevant to the query using semantic similarity"""
if not self.knn or not self.documents:
return []
query_embedding = self.embedding_model.encode(query)
_, neighbor_indices = self.knn.kneighbors(query_embedding.reshape(1, -1))
neighbor_indices = neighbor_indices.squeeze(0)
# Handle case where we have fewer documents than k
if len(neighbor_indices) == 0:
return []
relevant_doc_embeddings = self.document_embeddings[neighbor_indices]
# Remove duplicative content
included_idxs = filter_similar_embeddings(
relevant_doc_embeddings,
cosine_similarity,
threshold=DEFAULT_DUPLICATE_THRESHOLD,
)
relevant_doc_embeddings = relevant_doc_embeddings[included_idxs]
# Only include sufficiently relevant documents
similarity = cosine_similarity([query_embedding], relevant_doc_embeddings)[0]
similar_enough = np.where(similarity > self.similarity_threshold)[0]
included_idxs = [included_idxs[i] for i in similar_enough]
filtered_result_indices = neighbor_indices[included_idxs]
return [self.documents[i] for i in filtered_result_indices]
def default_preprocessing_func(text: str) -> List[str]:
"""Split text into words for keyword search"""
return text.split()
class BM25Retriever:
"""Keyword-based retrieval using BM25 algorithm"""
def __init__(
self,
vectorizer: Any,
docs: List[Document],
k: int = DEFAULT_BM25_K,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
):
self.vectorizer = vectorizer
self.docs = docs
self.k = k
self.preprocess_func = preprocess_func
@classmethod
def from_documents(
cls,
documents: Iterable[Document],
*,
bm25_params: Optional[Dict[str, Any]] = None,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
**kwargs: Any,
) -> "BM25Retriever":
"""
Create a BM25Retriever from a list of Documents.
"""
texts = [preprocess_func(d.issue_content) for d in documents]
bm25_params = bm25_params or {}
vectorizer = BM25Okapi(texts, **bm25_params)
return cls(
vectorizer=vectorizer,
docs=documents,
preprocess_func=preprocess_func,
**kwargs,
)
def get_relevant_documents(self, query: str) -> List[Document]:
"""Find documents most relevant to the query using keyword search"""
processed_query = self.preprocess_func(query)
return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
return return_docs
def weighted_reciprocal_rank(
doc_lists: List[List[Document]], weights: List[float], c: int = DEFAULT_RRF_CONSTANT
) -> List[Document]:
"""Combine multiple ranked document lists into a single ranking"""
if len(doc_lists) != len(weights):
raise ValueError("Number of rank lists must be equal to the number of weights.")
# Associate each doc's content with its RRF score
rrf_score = {}
for doc_list, weight in zip(doc_lists, weights):
for rank, doc in enumerate(doc_list, start=1):
if doc.issue_content not in rrf_score:
rrf_score[doc.issue_content] = weight / (rank + c)
else:
rrf_score[doc.issue_content] += weight / (rank + c)
# Deduplicate and sort by RRF score
unique_docs = {}
all_docs = []
for doc_list in doc_lists:
for doc in doc_list:
if doc.issue_content not in unique_docs:
unique_docs[doc.issue_content] = doc
all_docs.append(doc)
sorted_docs = sorted(
all_docs,
reverse=True,
key=lambda doc: rrf_score[doc.issue_content],
)
return sorted_docs
class JiraDocumentRetriever:
"""Handles retrieving and processing documents from Jira"""
def __init__(
self,
model_cache_dir: str = DEFAULT_MODEL_CACHE_DIR,
device: str = "cpu",
embedding_model_name: str = DEFAULT_EMBEDDING_MODEL,
batch_size: int = BATCH_SIZE,
):
self.device = device
self.model_cache_dir = model_cache_dir
self.embedding_model = None
self.embedding_model_name = embedding_model_name
self.batch_size = batch_size
self.text_splitter = TextSplitter(
chunk_size=DEFAULT_CHUNK_SIZE, chunk_overlap=DEFAULT_CHUNK_OVERLAP
)
async def load_embedding_model(self, event_emitter):
"""Load the embedding model for semantic search"""
await event_emitter.emit_status(
f"Loading embedding model {self.embedding_model_name}...", False
)
def load_model():
return SentenceTransformer(
self.embedding_model_name,
cache_folder=self.model_cache_dir,
device=self.device,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
# Run in an executor to avoid blocking the event loop
self.embedding_model = await asyncio.to_thread(load_model)
return self.embedding_model
async def retrieve_from_jira_issues(
self,
query: str,
documents: List[Document],
event_emitter,
num_results: int = DEFAULT_TOP_K,
similarity_threshold: float = DEFAULT_RELEVANCE_THRESHOLD,
ensemble_weighting: float = 0.5,
enable_hybrid_search: bool = ENABLE_HYBRID_SEARCH,
) -> List[Document]:
"""Find relevant document chunks from Jira issues using semantic and keyword search"""
if not documents:
return []
# Chunk documents
chunked_docs = await self.text_splitter.split_documents(
documents, event_emitter
)
await event_emitter.emit_status(
f"Prepared {len(chunked_docs)} content sections from {len(documents)} issues for analysis",
False,
)
if not chunked_docs:
return []
results = []
# Determine search approach based on settings
if not enable_hybrid_search:
ensemble_weighting = 1.0
# Semantic search with embeddings
if ensemble_weighting > 0:
await event_emitter.emit_status(
f"Analyzing content meaning in batches of {self.batch_size}...", False
)
dense_retriever = DenseRetriever(
self.embedding_model,
num_results=num_results,
similarity_threshold=similarity_threshold,
batch_size=self.batch_size,
)
dense_retriever.add_documents(chunked_docs)
dense_results = dense_retriever.get_relevant_documents(query)
await event_emitter.emit_status(
f"Located {len(dense_results)} sections that match your query's meaning",
False,
)
else:
dense_results = []
# Keyword search with BM25
if ensemble_weighting < 1:
await event_emitter.emit_status(
"Looking for matching keywords in content...", False
)
keyword_retriever = BM25Retriever.from_documents(
chunked_docs, k=num_results
)
sparse_results = keyword_retriever.get_relevant_documents(query)
await event_emitter.emit_status(
f"Found {len(sparse_results)} sections with matching keywords", False
)
else:
sparse_results = []
# Combine results from both search methods
results = weighted_reciprocal_rank(
[dense_results, sparse_results],
weights=[ensemble_weighting, 1 - ensemble_weighting],
)
return results[:num_results]
class Jira:
def __init__(
self,
username: str,
api_key: str,
base_url: str,
api_key_auth: bool = True,
ssl_verify: bool = True,
):
self.base_url = base_url
self.headers = self.authenticate(username, api_key, api_key_auth)
self.ssl_verify = ssl_verify
pass
def get(self, endpoint: str, params: Dict[str, Any]):
url = f"{self.base_url}/rest/api/3/{endpoint}"
response = requests.get(
url, params=params, headers=self.headers, verify=self.ssl_verify
)
return response.json()
def search(
self, query: str, limit: int = 5, split_terms: bool = True
) -> Dict[str, Any]:
endpoint = "search"
if split_terms:
terms = [term.strip() for term in query.split() if term.strip()]
if terms:
cql_terms = " OR ".join([f'text ~ "{term}"' for term in terms])
else:
# Handle the case with no meaningful terms
cql_terms = f'text ~ "{query}"'
else:
cql_terms = f'text ~ "{query}"'
params = {"jql": f"{cql_terms}", "maxResults": limit}
rawResponse = self.get(endpoint, params)
response = []
for item in rawResponse["issues"]:
response.append(item["key"])
return response
def get_issue(self, issue_key: str) -> Dict[str, Any]:
"""Get detailed information about a specific issue"""
endpoint = f"issue/{issue_key}"
params = {
"fields": "summary,description,created,status,issuetype,priority,assignee"
}
result = self.get(endpoint, params)
# Extract relevant information
fields = result.get("fields", {})
description = fields.get("description", {})
# Convert description to plain text if it exists
content = ""
if description and "content" in description:
for item in description.get("content", []):
if "content" in item:
for text_item in item.get("content", []):
if text_item.get("type") == "text":
content += text_item.get("text", "") + " "
return {
"key": result.get("key", ""),
"summary": fields.get("summary", ""),
"description": content,
"status": (
fields.get("status", {}).get("name", "") if fields.get("status") else ""
),
"issuetype": (
fields.get("issuetype", {}).get("name", "")
if fields.get("issuetype")
else ""
),
"priority": (
fields.get("priority", {}).get("name", "")
if fields.get("priority")
else ""
),
"assignee": (
fields.get("assignee", {}).get("displayName", "")
if fields.get("assignee")
else ""
),
"created": fields.get("created", ""),
"link": f"{self.base_url}/browse/{result.get('key', '')}",
}
def authenticate_api_key(self, username: str, api_key: str) -> Dict[str, str]:
auth_string = f"{username}:{api_key}"
encoded_auth_string = base64.b64encode(auth_string.encode("utf-8")).decode(
"utf-8"
)
return {"Authorization": "Basic " + encoded_auth_string}
def authenticate_personal_access_token(self, access_token: str) -> Dict[str, str]:
return {"Authorization": f"Bearer {access_token}"}
def authenticate(
self, username: str, api_key: str, api_key_auth: bool
) -> Dict[str, str]:
if api_key_auth:
return self.authenticate_api_key(username, api_key)
else:
return self.authenticate_personal_access_token(api_key)
class Tools:
def __init__(self):
self.valves = self.Valves()
self.document_retriever = None
pass
class Valves(BaseModel):
base_url: str = Field(
"https://example.atlassian.net",
description="The base URL of your Jira instance",
)
username: str = Field(
description="Default username (leave empty for personal access token)",
)
api_key: str = Field(
"ABCD1234", description="Default API key or personal access token"
)
ssl_verify: bool = Field(True, description="SSL verification")
result_limit: int = Field(
5,
description="The maximum number of search results to return",
required=True,
)
embedding_model_save_path: str = Field(
DEFAULT_MODEL_CACHE_DIR,
description="Path to the folder in which embedding models will be saved",
)
embedding_model_name: str = Field(
DEFAULT_EMBEDDING_MODEL,
description="Name or path of the embedding model to use",
)
cpu_only: bool = Field(default=True, description="Run the tool on CPU only")
chunk_size: int = Field(
default=DEFAULT_CHUNK_SIZE,
description="Max. chunk size for Jira issues",
ge=CHUNK_SIZE_MIN,
le=CHUNK_SIZE_MAX,
)
chunk_overlap: int = Field(
default=DEFAULT_CHUNK_OVERLAP,
description="Overlap size between chunks",
ge=CHUNK_OVERLAP_MIN,
le=CHUNK_OVERLAP_MAX,
)
max_results: int = Field(
default=DEFAULT_TOP_K,
description="Maximum number of relevant chunks to return after RAG processing",
ge=MAX_RESULTS_MIN,
)
similarity_threshold: float = Field(
default=DEFAULT_RELEVANCE_THRESHOLD,
description="Similarity Score Threshold. "
"Discard chunks that are not similar enough to the "
"search query and hence fall below the threshold.",
ge=SIMILARITY_SCORE_MIN,
le=SIMILARITY_SCORE_MAX,
)
ensemble_weighting: float = Field(
default=0.5,
description="Ensemble Weighting. "
"Smaller values = More keyword oriented, Larger values = More focus on semantic similarity. "
"Ignored if hybrid search is disabled.",
ge=SIMILARITY_SCORE_MIN,
le=SIMILARITY_SCORE_MAX,
)
enable_hybrid_search: bool = Field(
default=ENABLE_HYBRID_SEARCH,
description="Enable hybrid search (combine semantic and keyword search)",
)
full_context: bool = Field(
default=RAG_FULL_CONTEXT,
description="Return full issue content instead of just the most relevant chunks",
)
max_issue_size: int = Field(
default=MAX_ISSUE_SIZE,
description="Maximum size in characters for a Jira issue to prevent OOM",
ge=MAX_ISSUE_SIZE_MIN,
le=MAX_ISSUE_SIZE_MAX,
)
batch_size: int = Field(
default=BATCH_SIZE,
description="Number of documents to process at once for embedding",
ge=BATCH_SIZE_MIN,
le=BATCH_SIZE_MAX,
)
pass
class UserValves(BaseModel):
api_key_auth: bool = Field(
True,
description="Use API key authentication; disable this to use a personal access token instead.",
)
username: str = Field(
"",
description="Username, typically your email address; leave empty if using a personal access token or default settings.",
)
api_key: str = Field(
"",
description="API key or personal access token; leave empty to use the default settings.",
)
split_query: bool = Field(
True,
description="Split the query into individual words and search for each word separately.",
)
pass
async def search_jira(
self,
query: str,
__event_emitter__: Callable[[dict], Awaitable[None]],
__user__: dict = {},
) -> str:
"""
Search for a query on Jira. This returns the result of the search on Jira.
Use it to search for a query on Jira. When a user mentions a search on Jira, this must be used.
Note: This returns a list of issues that match the search query.
:param query: The text to search for on Jira. MUST be a string.
:return: A list of search results from Jira in JSON format with detailed information. If no results are found, an empty list is returned.
"""
event_emitter = EventEmitter(__event_emitter__)
try:
# Get the username and API key
if __user__ and "valves" in __user__:
user_valves = __user__["valves"]
api_key_auth = user_valves.api_key_auth
api_username = user_valves.username or self.valves.username
api_key = user_valves.api_key or self.valves.api_key
split_query = user_valves.split_query
else:
api_username = self.valves.username
api_key = self.valves.api_key
api_key_auth = True
split_query = True
if (api_key_auth and not api_username) or not api_key:
await event_emitter.emit_status(
"Please provide a username and API key or personal access token.",
True,
True,
)
return "Error: Please provide a username and API key or personal access token."
# Apply memory settings from valves
global MAX_ISSUE_SIZE, BATCH_SIZE
MAX_ISSUE_SIZE = self.valves.max_issue_size
BATCH_SIZE = self.valves.batch_size
# Ensure cache directory exists
model_cache_dir = (
self.valves.embedding_model_save_path or DEFAULT_MODEL_CACHE_DIR
)
try:
os.makedirs(model_cache_dir, exist_ok=True)
except Exception as e:
await event_emitter.emit_status(
f"Error creating model cache directory: {str(e)}", True, True
)
return f"Error: {str(e)}"
# Initialize document retriever and load model
try:
if not self.document_retriever:
self.document_retriever = JiraDocumentRetriever(
model_cache_dir=model_cache_dir,
device="cpu" if self.valves.cpu_only else "cuda",
embedding_model_name=self.valves.embedding_model_name,
batch_size=BATCH_SIZE,
)
if not self.document_retriever.embedding_model:
await self.document_retriever.load_embedding_model(event_emitter)
except Exception as e:
await event_emitter.emit_status(
f"Error loading embedding model: {str(e)}", True, True
)
return f"Error: Failed to load embedding model: {str(e)}"
jira = Jira(
api_username,
api_key,
self.valves.base_url,
api_key_auth,
self.valves.ssl_verify,
)
await event_emitter.emit_status(
f"Searching for '{query}' on Jira...", False
)
try:
issue_keys = jira.search(query, self.valves.result_limit, split_query)
if not issue_keys:
await event_emitter.emit_status(
f"No matching results found in Jira for '{query}'", True
)
return json.dumps([])
# Fetch detailed information for each issue
raw_documents = []
for i, key in enumerate(issue_keys):
await event_emitter.emit_status(
f"Retrieving Jira issue {i+1}/{len(issue_keys)}...", False
)
issue = jira.get_issue(key)
# Create a document with issue content
content = f"Title: {issue['summary']}\n\nDescription: {issue['description']}"
raw_documents.append(
Document(
issue_content=content,
metadata={
"key": issue["key"],
"summary": issue["summary"],
"status": issue["status"],
"issuetype": issue["issuetype"],
"priority": issue["priority"],
"assignee": issue["assignee"],
"created": issue["created"],
"link": issue["link"],
},
)
)
# If full context mode is enabled, skip RAG processing and return complete issues
if self.valves.full_context:
await event_emitter.emit_status(
f"Preparing all {len(raw_documents)} Jira issues for you...",
False,
)
# Create results with the complete content
results = []
for doc in raw_documents:
result = {
"key": doc.metadata["key"],
"summary": doc.metadata["summary"],
"description": doc.issue_content,
"status": doc.metadata["status"],
"issuetype": doc.metadata["issuetype"],
"priority": doc.metadata["priority"],
"assignee": doc.metadata["assignee"],
"created": doc.metadata["created"],
"link": doc.metadata["link"],
}
# Add citations for each full document
await event_emitter.emit_source(
result["summary"], result["link"], result["description"]
)
results.append(result)
await event_emitter.emit_status(
f"Found {len(results)} complete Jira issues matching '{query}'",
True,
)
return json.dumps(results)
# Apply RAG processing to find the most relevant content
elif raw_documents:
await event_emitter.emit_status(
f"Analyzing {len(raw_documents)} issues to find the most relevant content...",
False,
)
# Update text splitter settings before processing
self.document_retriever.text_splitter.chunk_size = (
self.valves.chunk_size
)
self.document_retriever.text_splitter.chunk_overlap = (
self.valves.chunk_overlap
)
relevant_chunks = (
await self.document_retriever.retrieve_from_jira_issues(
query=query,
documents=raw_documents,
event_emitter=event_emitter,
num_results=self.valves.max_results,
similarity_threshold=self.valves.similarity_threshold,
ensemble_weighting=self.valves.ensemble_weighting,
enable_hybrid_search=self.valves.enable_hybrid_search,
)
)
# Clear raw documents to free memory
raw_documents = None
# Group chunks by issue to build results
issue_chunks = {}
for chunk in relevant_chunks:
issue_key = chunk.metadata["key"]
if issue_key not in issue_chunks:
issue_chunks[issue_key] = {
"key": issue_key,
"summary": chunk.metadata["summary"],
"status": chunk.metadata["status"],
"issuetype": chunk.metadata["issuetype"],
"priority": chunk.metadata["priority"],
"assignee": chunk.metadata["assignee"],
"created": chunk.metadata["created"],
"link": chunk.metadata["link"],
"chunks": [],
}
issue_chunks[issue_key]["chunks"].append(chunk.issue_content)
# Create final results
results = []
for issue_key, issue_data in issue_chunks.items():
# Join chunks with context into a coherent description
description = "\n\n".join(issue_data["chunks"])
result = {
"key": issue_data["key"],
"summary": issue_data["summary"],
"description": description,
"status": issue_data["status"],
"issuetype": issue_data["issuetype"],
"priority": issue_data["priority"],
"assignee": issue_data["assignee"],
"created": issue_data["created"],
"link": issue_data["link"],
}
# Add citations for each relevant chunk
await event_emitter.emit_source(
result["summary"], result["link"], result["description"]
)
results.append(result)
else:
results = []
await event_emitter.emit_status(
f"Search complete! Found {len(results)} issues with information about '{query}'",
True,
)
return json.dumps(results)
except Exception as e:
await event_emitter.emit_status(
f"Failed to search for '{query}' on Jira: {e}", True, True
)
return f"Error: {e}"
except Exception as e:
await event_emitter.emit_status(
f"Unexpected error during search: {str(e)}.", True, True
)
return f"Error: {str(e)}"