Skip to content

Commit dac3f6e

Browse files
committed
🎨 Lint it
1 parent 83f23d1 commit dac3f6e

File tree

4 files changed

+142
-74
lines changed

4 files changed

+142
-74
lines changed

‎.pre-commit-config.yaml

-8
Original file line numberDiff line numberDiff line change
@@ -22,14 +22,6 @@ repos:
2222
- id: isort
2323
additional_dependencies: [toml]
2424

25-
- repo: https://github.com/flakeheaven/flakeheaven
26-
rev: 3.3.0
27-
hooks:
28-
- id: flakeheaven
29-
additional_dependencies:
30-
- flake8-bugbear
31-
- flake8-comprehensions
32-
3325
- repo: https://github.com/pre-commit/pre-commit-hooks
3426
rev: v4.6.0
3527
hooks:

‎mnist_ddp.py

+18-6
Original file line numberDiff line numberDiff line change
@@ -58,14 +58,26 @@ def train(args, model, device, train_loader, optimizer, epoch):
5858
if args.distributed:
5959
if dist.get_rank() == 0:
6060
if batch_idx % args.log_interval == 0:
61-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
62-
epoch, dist.get_world_size() * batch_idx * len(data), len(train_loader.dataset),
63-
100. * batch_idx / len(train_loader), loss.item()))
61+
print(
62+
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
63+
epoch,
64+
dist.get_world_size() * batch_idx * len(data),
65+
len(train_loader.dataset),
66+
100.0 * batch_idx / len(train_loader),
67+
loss.item(),
68+
)
69+
)
6470
else:
6571
if batch_idx % args.log_interval == 0:
66-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
67-
epoch, batch_idx * len(data), len(train_loader.dataset),
68-
100. * batch_idx / len(train_loader), loss.item()))
72+
print(
73+
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
74+
epoch,
75+
batch_idx * len(data),
76+
len(train_loader.dataset),
77+
100.0 * batch_idx / len(train_loader),
78+
loss.item(),
79+
)
80+
)
6981
if args.dry_run:
7082
break
7183

‎mnist_hf.py

+9-3
Original file line numberDiff line numberDiff line change
@@ -25,9 +25,15 @@ def train(args, model, device, train_loader, optimizer, epoch):
2525
optimizer.step()
2626
if batch_idx % args.log_interval == 0:
2727
if accelerator.is_main_process:
28-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
29-
epoch, AcceleratorState().num_processes * batch_idx * len(data), len(train_loader.dataset),
30-
100. * batch_idx / len(train_loader), loss.item()))
28+
print(
29+
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
30+
epoch,
31+
AcceleratorState().num_processes * batch_idx * len(data),
32+
len(train_loader.dataset),
33+
100.0 * batch_idx / len(train_loader),
34+
loss.item(),
35+
)
36+
)
3137
if args.dry_run:
3238
break
3339

‎mnist_hvd.py

+115-57
Original file line numberDiff line numberDiff line change
@@ -14,27 +14,63 @@
1414
from net import Net
1515

1616
# Training settings
17-
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
18-
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
19-
help='input batch size for training (default: 64)')
20-
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
21-
help='input batch size for testing (default: 1000)')
22-
parser.add_argument('--epochs', type=int, default=14, metavar='N',
23-
help='number of epochs to train (default: 14)')
24-
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
25-
help='learning rate (default: 0.01)')
26-
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
27-
help='SGD momentum (default: 0.5)')
28-
parser.add_argument('--no-cuda', action='store_true', default=False,
29-
help='disables CUDA training')
30-
parser.add_argument('--seed', type=int, default=42, metavar='S',
31-
help='random seed (default: 42)')
32-
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
33-
help='how many batches to wait before logging training status')
34-
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
35-
help='use fp16 compression during allreduce')
36-
parser.add_argument('--use-adasum', action='store_true', default=False,
37-
help='use adasum algorithm to do reduction')
17+
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
18+
parser.add_argument(
19+
"--batch-size",
20+
type=int,
21+
default=64,
22+
metavar="N",
23+
help="input batch size for training (default: 64)",
24+
)
25+
parser.add_argument(
26+
"--test-batch-size",
27+
type=int,
28+
default=1000,
29+
metavar="N",
30+
help="input batch size for testing (default: 1000)",
31+
)
32+
parser.add_argument(
33+
"--epochs",
34+
type=int,
35+
default=14,
36+
metavar="N",
37+
help="number of epochs to train (default: 14)",
38+
)
39+
parser.add_argument(
40+
"--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)"
41+
)
42+
parser.add_argument(
43+
"--momentum",
44+
type=float,
45+
default=0.5,
46+
metavar="M",
47+
help="SGD momentum (default: 0.5)",
48+
)
49+
parser.add_argument(
50+
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
51+
)
52+
parser.add_argument(
53+
"--seed", type=int, default=42, metavar="S", help="random seed (default: 42)"
54+
)
55+
parser.add_argument(
56+
"--log-interval",
57+
type=int,
58+
default=10,
59+
metavar="N",
60+
help="how many batches to wait before logging training status",
61+
)
62+
parser.add_argument(
63+
"--fp16-allreduce",
64+
action="store_true",
65+
default=False,
66+
help="use fp16 compression during allreduce",
67+
)
68+
parser.add_argument(
69+
"--use-adasum",
70+
action="store_true",
71+
default=False,
72+
help="use adasum algorithm to do reduction",
73+
)
3874

3975

4076
def train(model, train_sampler, train_loader, args, optimizer, epoch):
@@ -53,9 +89,15 @@ def train(model, train_sampler, train_loader, args, optimizer, epoch):
5389
if batch_idx % args.log_interval == 0:
5490
# Horovod: use train_sampler to determine the number of examples in
5591
# this worker's partition.
56-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
57-
epoch, hvd.size() * batch_idx * len(data), len(train_loader.dataset),
58-
100. * batch_idx / len(train_loader), loss.item()))
92+
print(
93+
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
94+
epoch,
95+
hvd.size() * batch_idx * len(data),
96+
len(train_loader.dataset),
97+
100.0 * batch_idx / len(train_loader),
98+
loss.item(),
99+
)
100+
)
59101

60102

61103
def metric_average(val, name):
@@ -67,14 +109,14 @@ def metric_average(val, name):
67109

68110
def test(model, test_sampler, test_loader, args):
69111
model.eval()
70-
test_loss = 0.
71-
test_accuracy = 0.
112+
test_loss = 0.0
113+
test_accuracy = 0.0
72114
for data, target in test_loader:
73115
if args.cuda:
74116
data, target = data.cuda(), target.cuda()
75117
output = model(data)
76118
# sum up batch loss
77-
test_loss += F.nll_loss(output, target, reduction='sum').item()
119+
test_loss += F.nll_loss(output, target, reduction="sum").item()
78120
# get the index of the max log-probability
79121
pred = output.data.max(1, keepdim=True)[1]
80122
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
@@ -85,13 +127,16 @@ def test(model, test_sampler, test_loader, args):
85127
test_accuracy /= len(test_sampler)
86128

87129
# Horovod: average metric values across workers.
88-
test_loss = metric_average(test_loss, 'avg_loss')
89-
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
130+
test_loss = metric_average(test_loss, "avg_loss")
131+
test_accuracy = metric_average(test_accuracy, "avg_accuracy")
90132

91133
# Horovod: print output only on first rank.
92134
if hvd.rank() == 0:
93-
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
94-
test_loss, 100. * test_accuracy))
135+
print(
136+
"\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n".format(
137+
test_loss, 100.0 * test_accuracy
138+
)
139+
)
95140

96141

97142
def main():
@@ -107,44 +152,54 @@ def main():
107152
torch.cuda.set_device(hvd.local_rank())
108153
torch.cuda.manual_seed(args.seed)
109154

110-
111155
# Horovod: limit # of CPU threads to be used per worker.
112156
torch.set_num_threads(1)
113157

114-
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
158+
kwargs = {"num_workers": 1, "pin_memory": True} if args.cuda else {}
115159
# When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
116160
# issues with Infiniband implementations that are not fork-safe
117-
if (kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
118-
mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
119-
kwargs['multiprocessing_context'] = 'forkserver'
120-
121-
transform=transforms.Compose([
122-
transforms.ToTensor(),
123-
transforms.Normalize((0.1307,), (0.3081,))
124-
])
161+
if (
162+
kwargs.get("num_workers", 0) > 0
163+
and hasattr(mp, "_supports_context")
164+
and mp._supports_context
165+
and "forkserver" in mp.get_all_start_methods()
166+
):
167+
kwargs["multiprocessing_context"] = "forkserver"
168+
169+
transform = transforms.Compose(
170+
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
171+
)
125172

126173
if hvd.rank() != 0:
127174
# might be downloading mnist data, let rank 0 download first
128175
hvd.barrier()
129176

130177
# train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True, transform=transform)
131-
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
178+
train_dataset = datasets.MNIST(
179+
"./data", train=True, download=True, transform=transform
180+
)
132181

133182
if hvd.rank() == 0:
134183
# mnist data is downloaded, indicate other ranks can proceed
135184
hvd.barrier()
136185

137186
# Horovod: use DistributedSampler to partition the training data.
138-
train_sampler = dist.DistributedSampler(train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
187+
train_sampler = dist.DistributedSampler(
188+
train_dataset, num_replicas=hvd.size(), rank=hvd.rank()
189+
)
139190
train_loader = torch.utils.data.DataLoader(
140-
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
191+
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs
192+
)
141193

142194
# test_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transform)
143-
test_dataset = datasets.MNIST('./data', train=False, transform=transform)
195+
test_dataset = datasets.MNIST("./data", train=False, transform=transform)
144196
# Horovod: use DistributedSampler to partition the test data.
145-
test_sampler = dist.DistributedSampler(test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
146-
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
147-
sampler=test_sampler, **kwargs)
197+
test_sampler = dist.DistributedSampler(
198+
test_dataset, num_replicas=hvd.size(), rank=hvd.rank()
199+
)
200+
test_loader = torch.utils.data.DataLoader(
201+
test_dataset, batch_size=args.test_batch_size, sampler=test_sampler, **kwargs
202+
)
148203

149204
model = Net()
150205

@@ -159,8 +214,9 @@ def main():
159214
lr_scaler = hvd.local_size()
160215

161216
# Horovod: scale learning rate by lr_scaler.
162-
optimizer = optim.SGD(model.parameters(), lr=args.lr * lr_scaler,
163-
momentum=args.momentum)
217+
optimizer = optim.SGD(
218+
model.parameters(), lr=args.lr * lr_scaler, momentum=args.momentum
219+
)
164220

165221
# Horovod: broadcast parameters & optimizer state.
166222
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
@@ -170,12 +226,14 @@ def main():
170226
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
171227

172228
# Horovod: wrap optimizer with DistributedOptimizer.
173-
optimizer = hvd.DistributedOptimizer(optimizer,
174-
named_parameters=model.named_parameters(),
175-
compression=compression,
176-
op=hvd.Adasum if args.use_adasum else hvd.Average)
229+
optimizer = hvd.DistributedOptimizer(
230+
optimizer,
231+
named_parameters=model.named_parameters(),
232+
compression=compression,
233+
op=hvd.Adasum if args.use_adasum else hvd.Average,
234+
)
177235

178-
total_time = 0.
236+
total_time = 0.0
179237

180238
for epoch in range(1, args.epochs + 1):
181239
start = time.time()
@@ -186,6 +244,6 @@ def main():
186244
return hvd.rank(), total_time
187245

188246

189-
if __name__ == '__main__':
247+
if __name__ == "__main__":
190248
rk, tt = main()
191-
print(f'[{rk}] Total time elapsed: {tt} seconds')
249+
print(f"[{rk}] Total time elapsed: {tt} seconds")

0 commit comments

Comments
 (0)