Skip to content

Isolate StandardScalar from load dataset #39

Open
@akashshah59

Description

@akashshah59

The current implementation of data.py/load_dataset() instantiates a standard scaler by default.

def load_dataset(dataset_dir, batch_size, val_batch_size=None, test_batch_size=None):
    if val_batch_size is None:
        val_batch_size = batch_size

    if test_batch_size is None:
        test_batch_size = batch_size

    data = {}

    for category in ["train", "val", "test"]:
        cat_data = np.load(os.path.join(dataset_dir, category + ".npz"))
        data["x_" + category] = cat_data["x"]
        data["y_" + category] = cat_data["y"]

    scaler = StandardScaler(data["x_train"][..., 0])

    for category in ["train", "val", "test"]:
        data["x_" + category][..., 0] = scaler.transform(data["x_" + category][..., 0])
        data["y_" + category][..., 0] = scaler.transform(data["y_" + category][..., 0])

    data_train = PaddedDataset(batch_size, data["x_train"], data["y_train"])
    data["train_loader"] = DataLoader(data_train, batch_size, shuffle=True)

    data_val = PaddedDataset(val_batch_size, data["x_val"], data["y_val"])
    data["val_loader"] = DataLoader(data_val, val_batch_size, shuffle=False)

    data_test = PaddedDataset(test_batch_size, data["x_test"], data["y_test"])
    data["test_loader"] = DataLoader(data_test, test_batch_size, shuffle=False)

    data["scaler"] = scaler
    return data

The goal is to be able to isolate the scalar from the data loading method, and support more scalars eventually.

Metadata

Metadata

Assignees

Labels

enhancementNew feature or request

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions