|
1 |
| - |
2 |
| -(* ::Subsection::Closed:: *) |
3 |
| -(* 1.1.1.1 (a+b x)^m *) |
4 |
| -Int[1/x_, x_Symbol] := Log[x] |
5 |
| -Int[x_^m_., x_Symbol] := x^(m + 1)/(m + 1) /; FreeQ[m, x] && NeQ[m, -1] |
6 |
| -Int[1/(a_ + b_.*x_), x_Symbol] := Log[RemoveContent[a + b*x, x]]/b /; FreeQ[{a, b}, x] |
7 |
| -Int[(a_. + b_.*x_)^m_, x_Symbol] := (a + b*x)^(m + 1)/(b*(m + 1)) /; FreeQ[{a, b, m}, x] && NeQ[m, -1] |
8 |
| -Int[(a_. + b_.*u_)^m_, x_Symbol] := 1/Coefficient[u, x, 1]*Subst[Int[(a + b*x)^m, x], x, u] /; FreeQ[{a, b, m}, x] && LinearQ[u, x] && NeQ[u, x] |
| 1 | +(* ::Package:: *) |
| 2 | + |
| 3 | +(************************************************************************) |
| 4 | +(* This file was generated automatically by the Mathematica front end. *) |
| 5 | +(* It contains Initialization cells from a Notebook file, which *) |
| 6 | +(* typically will have the same name as this file except ending in *) |
| 7 | +(* ".nb" instead of ".m". *) |
| 8 | +(* *) |
| 9 | +(* This file is intended to be loaded into the Mathematica kernel using *) |
| 10 | +(* the package loading commands Get or Needs. Doing so is equivalent *) |
| 11 | +(* to using the Evaluate Initialization Cells menu command in the front *) |
| 12 | +(* end. *) |
| 13 | +(* *) |
| 14 | +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) |
| 15 | +(* automatically each time the parent Notebook file is saved in the *) |
| 16 | +(* Mathematica front end. Any changes you make to this file will be *) |
| 17 | +(* overwritten. *) |
| 18 | +(************************************************************************) |
| 19 | + |
| 20 | + |
| 21 | + |
| 22 | +(* ::Code:: *) |
| 23 | +(* Int[u_.*(v_+w_)^p_.,x_Symbol] := |
| 24 | + Int[u*w^p,x] /; |
| 25 | +FreeQ[p,x] && EqQ[v,0] *) |
| 26 | + |
| 27 | + |
| 28 | +(* ::Code:: *) |
| 29 | +Int[u_.*(a_+b_.*x_^n_.)^p_.,x_Symbol] := |
| 30 | + Int[u*(b*x^n)^p,x] /; |
| 31 | +FreeQ[{a,b,n,p},x] && EqQ[a,0] |
| 32 | + |
| 33 | + |
| 34 | +(* ::Code:: *) |
| 35 | +Int[u_.*(a_.+b_.*x_^n_.)^p_.,x_Symbol] := |
| 36 | + Int[u*a^p,x] /; |
| 37 | +FreeQ[{a,b,n,p},x] && EqQ[b,0] |
| 38 | + |
| 39 | + |
| 40 | +(* ::Code:: *) |
| 41 | +Int[u_.*(a_+b_.*x_^n_.+c_.*x_^j_.)^p_.,x_Symbol] := |
| 42 | + Int[u*(b*x^n+c*x^(2*n))^p,x] /; |
| 43 | +FreeQ[{a,b,c,n,p},x] && EqQ[j,2*n] && EqQ[a,0] |
| 44 | + |
| 45 | + |
| 46 | +(* ::Code:: *) |
| 47 | +Int[u_.*(a_.+b_.*x_^n_.+c_.*x_^j_.)^p_.,x_Symbol] := |
| 48 | + Int[u*(a+c*x^(2*n))^p,x] /; |
| 49 | +FreeQ[{a,b,c,n,p},x] && EqQ[j,2*n] && EqQ[b,0] |
| 50 | + |
| 51 | + |
| 52 | +(* ::Code:: *) |
| 53 | +Int[u_.*(a_.+b_.*x_^n_.+c_.*x_^j_.)^p_.,x_Symbol] := |
| 54 | + Int[u*(a+b*x^n)^p,x] /; |
| 55 | +FreeQ[{a,b,c,n,p},x] && EqQ[j,2*n] && EqQ[c,0] |
| 56 | + |
| 57 | + |
| 58 | +(* ::Code:: *) |
| 59 | +Int[u_.*(v_.+a_.*Fx_+b_.*Fx_)^p_.,x_Symbol] := |
| 60 | + Int[u*(v+(a+b)*Fx)^p,x] /; |
| 61 | +FreeQ[{a,b},x] && Not[FreeQ[Fx,x]] |
| 62 | + |
| 63 | + |
| 64 | +(* ::Code:: *) |
| 65 | +Int[u_.*Px_^p_,x_Symbol] := |
| 66 | + Int[u*Px^Simplify[p],x] /; |
| 67 | +PolyQ[Px,x] && Not[RationalQ[p]] && FreeQ[p,x] && RationalQ[Simplify[p]] |
| 68 | + |
| 69 | + |
| 70 | +(* ::Code:: *) |
| 71 | +Int[u_.*x_^m_.*(a_.*x_)^p_,x_Symbol] := |
| 72 | + 1/a^m \[Star] Int[u*(a*x)^(m+p),x] /; |
| 73 | +FreeQ[{a,m,p},x] && IntegerQ[m] |
| 74 | + |
| 75 | + |
| 76 | +(* ::Code:: *) |
| 77 | +Int[u_.*(e_.*x_)^m_.*Px_^p_.,x_Symbol] := |
| 78 | + With[{r=Expon[Px,x,Min]}, |
| 79 | + 1/e^(p*r) \[Star] Int[u*(e*x)^(m+p*r)*ExpandToSum[Px/x^r,x]^p,x] /; |
| 80 | + IGtQ[r,0]] /; |
| 81 | +FreeQ[{e,m},x] && PolyQ[Px,x] && IntegerQ[p] && Not[MonomialQ[Px,x]] |
| 82 | + |
| 83 | + |
| 84 | +(* ::Code:: *) |
| 85 | +Int[u_.*(e_.*x_)^m_.*(a_.*x_^r_.+b_.*x_^s_.)^p_.,x_Symbol] := |
| 86 | + 1/e^(p*r) \[Star] Int[u*(e*x)^(m+p*r)*(a+b*x^(s-r))^p,x] /; |
| 87 | +FreeQ[{a,b,e,m,r,s},x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ[e,0]) && PosQ[s-r] |
| 88 | + |
| 89 | + |
| 90 | +(* ::Code:: *) |
| 91 | +Int[u_.*(e_.*x_)^m_.*(a_.*x_^r_.+b_.*x_^s_.+c_.*x_^t_.)^p_.,x_Symbol] := |
| 92 | + 1/e^(p*r) \[Star] Int[u*(e*x)^(m+p*r)*(a+b*x^(s-r)+c*x^(t-r))^p,x] /; |
| 93 | +FreeQ[{a,b,c,e,m,r,s,t},x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ[e,0]) && PosQ[s-r] && PosQ[t-r] |
| 94 | + |
| 95 | + |
| 96 | +(* ::Code:: *) |
| 97 | +Int[u_.*(e_.*x_)^m_.*(a_.*x_^r_.+b_.*x_^s_.+c_.*x_^t_.+d_.*x_^q_.)^p_.,x_Symbol] := |
| 98 | + 1/e^(p*r) \[Star] Int[u*(e*x)^(m+p*r)*(a+b*x^(s-r)+c*x^(t-r)+d*x^(q-r))^p,x] /; |
| 99 | +FreeQ[{a,b,c,d,e,m,r,s,t,q},x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ[e,0]) && PosQ[s-r] && PosQ[t-r] && PosQ[q-r] |
| 100 | + |
| 101 | + |
| 102 | +(* ::Code:: *) |
| 103 | +Int[u_.*(v_.*(a_+b_.*x_^n_.)^mm_.*(c_+d_.*x_^n2_.)^m_.)^p_,x_Symbol] := |
| 104 | + Int[u*(v*c^m/a^(2*m)*(a-b*x^n)^m)^p,x] /; |
| 105 | +FreeQ[{a,b,c,d,n,p},x] && EqQ[n2,2*n] && EqQ[b^2*c+a^2*d,0] && IntegersQ[m,mm] && EqQ[m+mm,0] |
| 106 | + |
| 107 | + |
| 108 | +(* ::Code:: *) |
| 109 | +Int[a_./x_,x_Symbol] := |
| 110 | + a*Log[x] /; |
| 111 | +FreeQ[a,x] |
| 112 | + |
| 113 | + |
| 114 | +(* ::Code:: *) |
| 115 | +Int[a_.*x_^m_.,x_Symbol] := |
| 116 | + a*x^(m+1)/(m+1) /; |
| 117 | +FreeQ[{a,m},x] && NeQ[m,-1] |
| 118 | + |
| 119 | + |
| 120 | +(* ::Code:: *) |
| 121 | +(* Int[1/(a_+b_.*x_),x_Symbol] := |
| 122 | + With[{g=GCD[a,b]}, 1/g \[Star] Int[1/(a/g+b/g*x),x] /; |
| 123 | + NeQ[g,1]] /; |
| 124 | +RationalQ[a,b] *) |
| 125 | + |
| 126 | + |
| 127 | +(* ::Code:: *) |
| 128 | +(* Int[1/(a1_.*a2_.+b1_.*b2_.*x_),x_Symbol] := |
| 129 | + With[{g=GCD[a1,b1]}, 1/g \[Star] Int[1/(a1*a2/g+b1*b2/g*x),x] /; |
| 130 | + NeQ[g,1]] /; |
| 131 | +RationalQ[a1,b1] && FreeQ[{a2,b2},x] *) |
| 132 | + |
| 133 | + |
| 134 | +(* ::Code:: *) |
| 135 | +(* Int[1/(a_.*c_^m_.+b_.*c_^n_.*x_),x_Symbol] := |
| 136 | + 1/c^n \[Star] Int[1/(a*c^(m-n)+b*x),x] /; |
| 137 | +FreeQ[{a,b,c},x] && IntegersQ[m,n] && GeQ[m-n,0] *) |
| 138 | + |
| 139 | + |
| 140 | +(* ::Code:: *) |
| 141 | +(* Int[1/(a_.*c_^m_.+b_.*c_^n_.*x_),x_Symbol] := |
| 142 | + 1/c^m \[Star] Int[1/(a+b*c^(n-m)*x),x] /; |
| 143 | +FreeQ[{a,b,c},x] && IntegersQ[m,n] && GtQ[n-m,0] *) |
| 144 | + |
| 145 | + |
| 146 | +(* ::Code:: *) |
| 147 | +(* Int[1/(a_+b_.*x_),x_Symbol] := |
| 148 | + Log[a+b*x]/b /; |
| 149 | +FreeQ[{a,b},x] *) |
| 150 | + |
| 151 | + |
| 152 | +(* ::Code:: *) |
| 153 | +Int[c_./(a_.+b_.*x_),x_Symbol] := |
| 154 | + c*Log[RemoveContent[a+b*x,x]]/b /; |
| 155 | +FreeQ[{a,b,c},x] |
| 156 | + |
| 157 | + |
| 158 | +(* ::Code:: *) |
| 159 | +Int[c_.*(a_.+b_.*x_)^m_.,x_Symbol] := |
| 160 | + c*(a+b*x)^(m+1)/(b*(m+1)) /; |
| 161 | +FreeQ[{a,b,c,m},x] && NeQ[m,-1] |
| 162 | + |
| 163 | + |
| 164 | +(* ::Code:: *) |
| 165 | +Int[c_.*(a_.+b_.*u_)^m_,x_Symbol] := |
| 166 | + 1/D[u,x] \[Star] Subst[Int[c*(a+b*x)^m,x],x,u] /; |
| 167 | +FreeQ[{a,b,c,m},x] && LinearQ[u,x] && NeQ[u,x] |
| 168 | + |
| 169 | + |
| 170 | +(* ::Code:: *) |
| 171 | +Int[(a_./x_)^p_,x_Symbol] := |
| 172 | + -a*(a/x)^(p-1)/(p-1) /; |
| 173 | +FreeQ[{a,p},x] && Not[IntegerQ[p]] |
| 174 | + |
| 175 | + |
| 176 | +(* ::Code:: *) |
| 177 | +Int[(a_.*x_^n_)^p_,x_Symbol] := |
| 178 | + (a*x^n)^p/x^(n*p) \[Star] Int[x^(n*p),x] /; |
| 179 | +FreeQ[{a,n,p},x] && Not[IntegerQ[p]] |
| 180 | + |
| 181 | + |
| 182 | +(* ::Code:: *) |
| 183 | +Int[x_^m_.*(a_.*x_^n_)^p_,x_Symbol] := |
| 184 | + 1/(n*a^(Simplify[(m+1)/n]-1)) \[Star] Subst[Int[(a*x)^(Simplify[(m+1)/n]+p-1),x],x,x^n] /; |
| 185 | +FreeQ[{a,m,n,p},x] && IntegerQ[Simplify[(m+1)/n]] |
| 186 | + |
| 187 | + |
| 188 | +(* ::Code:: *) |
| 189 | +Int[x_^m_.*(a_.*x_^n_.)^p_,x_Symbol] := |
| 190 | + 1/a^(m/n) \[Star] Int[(a*x^n)^(p+m/n),x] /; |
| 191 | +FreeQ[{a,m,n,p},x] && IntegerQ[m/n] && LtQ[p*m/n,0] |
| 192 | + |
| 193 | + |
| 194 | +(* ::Code:: *) |
| 195 | +Int[x_^m_.*(a_.*x_^n_.)^p_,x_Symbol] := |
| 196 | + (a*x^n)^p/x^(n*p) \[Star] Int[x^(m+n*p),x] /; |
| 197 | +FreeQ[{a,m,n,p},x] |
| 198 | + |
| 199 | + |
| 200 | +(* ::Code:: *) |
| 201 | +Int[a_,x_Symbol] := |
| 202 | + a*x /; |
| 203 | +FreeQ[a,x] |
| 204 | + |
| 205 | + |
| 206 | +(* ::Code:: *) |
| 207 | +Int[-Fx_,x_Symbol] := |
| 208 | + Identity[-1] \[Star] Int[Fx,x] |
| 209 | + |
| 210 | + |
| 211 | +(* ::Code:: *) |
| 212 | +Int[Complex[0,a_]*Fx_,x_Symbol] := |
| 213 | + Complex[Identity[0],a] \[Star] Int[Fx,x] /; |
| 214 | +FreeQ[a,x] && EqQ[a^2,1] |
| 215 | + |
| 216 | + |
| 217 | +(* ::Code:: *) |
| 218 | +Int[a_*Fx_,x_Symbol] := |
| 219 | + a \[Star] Int[Fx,x] /; |
| 220 | +FreeQ[a,x] && Not[MatchQ[Fx, b_*Gx_ /; FreeQ[b,x]]] |
| 221 | + |
| 222 | + |
| 223 | +(* ::Code:: *) |
| 224 | +Int[u_.*(a_.*x_)^m_.*(b_.*x_^i_.)^p_.*(c_.*x_^j_.)^q_.*(d_.*x_^k_.)^r_.,x_Symbol] := |
| 225 | + (b*x^i)^p*(c*x^j)^q*(d*x^k)^r/(a*x)^(i*p+j*q+k*r) \[Star] Int[u*(a*x)^(m+i*p+j*q+k*r),x] /; |
| 226 | +FreeQ[{a,b,c,d,i,j,k,m,p,q,r},x] |
| 227 | + |
| 228 | + |
| 229 | +(* ::Code:: *) |
| 230 | +Int[u_.*(a_.*x_)^m_.*(b_.*x_^i_.)^p_.*(c_.*x_^j_.)^q_.,x_Symbol] := |
| 231 | + (b*x^i)^p*(c*x^j)^q/(a*x)^(i*p+j*q) \[Star] Int[u*(a*x)^(m+i*p+j*q),x] /; |
| 232 | +FreeQ[{a,b,c,i,j,m,p,q},x] |
| 233 | + |
| 234 | + |
| 235 | +(* ::Code:: *) |
| 236 | +Int[u_.*(a_.*x_)^m_.*(b_.*x_^i_.)^p_,x_Symbol] := |
| 237 | + b^IntPart[p]*(b*x^i)^FracPart[p]/(a^(i*IntPart[p])*(a*x)^(i*FracPart[p])) \[Star] Int[u*(a*x)^(m+i*p),x] /; |
| 238 | +FreeQ[{a,b,i,m,p},x] && IntegerQ[i] && Not[IntegerQ[p]] |
| 239 | + |
| 240 | + |
| 241 | +(* ::Code:: *) |
| 242 | +Int[u_.*(a_.*x_)^m_.*(b_.*x_^i_.)^p_,x_Symbol] := |
| 243 | + (b*x^i)^p/(a*x)^(i*p) \[Star] Int[u*(a*x)^(m+i*p),x] /; |
| 244 | +FreeQ[{a,b,i,m,p},x] && Not[IntegerQ[p]] |
| 245 | + |
| 246 | + |
| 247 | +(* ::Code:: *) |
| 248 | +Int[u_.*(a_.*x_^m_)^p_.*(b_.*x_^n_)^q_.*(c_.*x_^k_)^r_.,x_Symbol] := |
| 249 | + (a*x^m)^p*(b*x^n)^q*(c*x^k)^r/x^(m*p+n*q+k*r) \[Star] Int[u*x^(m*p+n*q+k*r),x] /; |
| 250 | +FreeQ[{a,b,c,m,n,k,p,q,r},x] |
| 251 | + |
| 252 | + |
| 253 | +(* ::Code:: *) |
| 254 | +Int[u_.*(a_.*x_^m_)^p_.*(b_.*x_^n_)^q_.,x_Symbol] := |
| 255 | + a^IntPart[p]*b^IntPart[q]*(a*x^m)^FracPart[p]*(b*x^n)^FracPart[q]/x^(m*FracPart[p]+n*FracPart[q]) \[Star] Int[u*x^(m*p+n*q),x] /; |
| 256 | +FreeQ[{a,b,m,n,p,q},x] |
| 257 | + |
| 258 | + |
| 259 | +(* ::Code:: *) |
| 260 | +Int[u_.*(a_.*x_^m_)^p_,x_Symbol] := |
| 261 | + a^IntPart[p]*(a*x^m)^FracPart[p]/x^(m*FracPart[p]) \[Star] Int[u*x^(m*p),x] /; |
| 262 | +FreeQ[{a,m,p},x] && Not[IntegerQ[p]] |
| 263 | + |
| 264 | + |
| 265 | + |
0 commit comments