-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathpke.rs
192 lines (171 loc) · 5.72 KB
/
pke.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//! SM2 Encryption Algorithm (SM2) as defined in [draft-shen-sm2-ecdsa § 5].
//!
//! ## Usage
#![cfg_attr(feature = "alloc", doc = "```")]
#![cfg_attr(not(feature = "alloc"), doc = "```ignore")]
//! use sm2::pke::{EcDecrypt, EcEncrypt, Cipher, Mode};
//! use sm2::SecretKey;
//! use rand_core::OsRng;
//! // Encrypting
//! let secret_key = SecretKey::try_from_rng(&mut OsRng).unwrap();
//! let public_key = secret_key.public_key();
//! let plaintext = b"plaintext";
//! let cipher = public_key.encrypt(plaintext).unwrap();
//! let ciphertext = cipher.to_vec(Mode::C1C3C2);
//!
//! // Decrypting
//! let cipher = Cipher::from_slice(&ciphertext, Mode::C1C3C2).unwrap();
//! let ciphertext = secret_key.decrypt(&cipher).unwrap();
//! assert_eq!(ciphertext, plaintext)
//! ```
//!
//!
//!
//!
use core::cmp::min;
use elliptic_curve::{
CurveArithmetic, Error, FieldBytesSize, Group, PrimeField, Result,
array::typenum::Unsigned,
ops::Reduce,
sec1::{EncodedPoint, FromEncodedPoint, ModulusSize, Tag, ToEncodedPoint},
};
use primeorder::{AffinePoint, PrimeCurveParams};
use signature::digest::{FixedOutputReset, Output, OutputSizeUser, Update};
#[cfg(feature = "alloc")]
use alloc::{borrow::Cow, vec::Vec};
#[cfg(feature = "arithmetic")]
mod decrypting;
#[cfg(feature = "arithmetic")]
mod encrypting;
use crate::Sm2;
use sm3::Sm3;
#[cfg(feature = "arithmetic")]
pub use self::{decrypting::EcDecrypt, encrypting::EcEncrypt};
/// Modes for the cipher encoding/decoding.
#[derive(Clone, Copy, Debug)]
pub enum Mode {
/// old mode
C1C2C3,
/// new mode
C1C3C2,
}
/// Represents a cipher structure containing encryption-related data (asn.1 format).
///
/// The `Cipher` structure includes the coordinates of the elliptic curve point (`x`, `y`),
/// the digest of the message, and the encrypted cipher text.
/// TODO: ASN1 Encode and Decode
#[derive(Debug)]
pub struct Cipher<'a, C: CurveArithmetic = Sm2, D: OutputSizeUser = Sm3> {
c1: C::AffinePoint,
#[cfg(feature = "alloc")]
c2: Cow<'a, [u8]>,
#[cfg(not(feature = "alloc"))]
c2: &'a [u8],
c3: Output<D>,
}
impl<'a, C, D> Cipher<'a, C, D>
where
C: PrimeCurveParams,
C::AffinePoint: ToEncodedPoint<C> + FromEncodedPoint<C>,
C::FieldBytesSize: ModulusSize,
D: OutputSizeUser,
{
/// Decode from slice
pub fn from_slice(cipher: &'a [u8], mode: Mode) -> Result<Self> {
let tag = Tag::from_u8(cipher.first().cloned().ok_or(Error)?)?;
let c1_len = tag.message_len(C::FieldBytesSize::USIZE);
// B1: get 𝐶1 from 𝐶
let (c1, c) = cipher.split_at(c1_len);
// verify that point c1 satisfies the elliptic curve
let encoded_c1 = EncodedPoint::<C>::from_bytes(c1)?;
let c1 = Option::from(C::AffinePoint::from_encoded_point(&encoded_c1)).ok_or(Error)?;
// B2: compute point 𝑆 = [ℎ]𝐶1
let scalar: C::Scalar = Reduce::<C::Uint>::reduce(C::Uint::from(C::FieldElement::S));
let s: C::ProjectivePoint = c1 * scalar;
if s.is_identity().into() {
return Err(Error);
}
let digest_size = D::output_size();
let (c2, c3_buf) = match mode {
Mode::C1C3C2 => {
let (c3, c2) = c.split_at(digest_size);
(c2, c3)
}
Mode::C1C2C3 => c.split_at(c.len() - digest_size),
};
let mut c3 = Output::<D>::default();
c3.clone_from_slice(c3_buf);
#[cfg(feature = "alloc")]
let c2 = Cow::Borrowed(c2);
Ok(Self { c1, c2, c3 })
}
/// Encode to Vec
#[cfg(feature = "alloc")]
pub fn to_vec(&self, mode: Mode) -> Vec<u8> {
let point = self.c1.to_encoded_point(false);
let len = point.len() + self.c2.len() + self.c3.len();
let mut result = Vec::with_capacity(len);
match mode {
Mode::C1C2C3 => {
result.extend(point.as_ref());
result.extend(self.c2.as_ref());
result.extend(&self.c3);
}
Mode::C1C3C2 => {
result.extend(point.as_ref());
result.extend(&self.c3);
result.extend(self.c2.as_ref());
}
}
result
}
/// Get C1
pub fn c1(&self) -> &C::AffinePoint {
&self.c1
}
/// Get C2
pub fn c2(&self) -> &[u8] {
#[cfg(feature = "alloc")]
return &self.c2;
#[cfg(not(feature = "alloc"))]
return self.c2;
}
/// Get C3
pub fn c3(&self) -> &Output<D> {
&self.c3
}
}
/// Performs key derivation using a hash function and elliptic curve point.
/// Magic modification: Does it support streaming encryption and decryption?
fn kdf<D, C>(hasher: &mut D, kpb: AffinePoint<C>, msg: &[u8], c2_out: &mut [u8]) -> Result<()>
where
D: Update + FixedOutputReset,
C: CurveArithmetic + PrimeCurveParams,
FieldBytesSize<C>: ModulusSize,
AffinePoint<C>: ToEncodedPoint<C>,
{
let klen = msg.len();
let mut ct: i32 = 0x00000001;
let mut offset = 0;
let digest_size = D::output_size();
let mut ha = Output::<D>::default();
let encode_point = kpb.to_encoded_point(false);
hasher.reset();
while offset < klen {
hasher.update(encode_point.x().ok_or(Error)?);
hasher.update(encode_point.y().ok_or(Error)?);
hasher.update(&ct.to_be_bytes());
hasher.finalize_into_reset(&mut ha);
let xor_len = min(digest_size, klen - offset);
xor(msg, c2_out, &ha, offset, xor_len);
offset += xor_len;
ct += 1;
}
Ok(())
}
/// XORs a portion of the buffer `c2` with a hash value.
fn xor(msg: &[u8], c2_out: &mut [u8], ha: &[u8], offset: usize, xor_len: usize) {
for i in 0..xor_len {
c2_out[offset + i] = msg[offset + i] ^ ha[i];
}
}