-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathpke.rs
177 lines (160 loc) · 5.75 KB
/
pke.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
//! SM2 Encryption Algorithm (SM2) as defined in [draft-shen-sm2-ecdsa § 5].
//!
//! ## Usage
//!
//! NOTE: requires the `sm3` crate for digest functions and the `primeorder` crate for prime field operations.
//!
//! The `DecryptingKey` struct is used for decrypting messages that were encrypted using the SM2 encryption algorithm.
//! It is initialized with a `SecretKey` or a non-zero scalar value and can decrypt ciphertexts using the specified decryption mode.
#![cfg_attr(feature = "std", doc = "```")]
#![cfg_attr(not(feature = "std"), doc = "```ignore")]
//! # fn example() -> Result<(), Box<dyn std::error::Error>> {
//! use rand_core::OsRng; // requires 'getrandom` feature
//! use sm2::{
//! pke::{EncryptingKey, Mode},
//! {SecretKey, PublicKey}
//!
//! };
//!
//! // Encrypting
//! let secret_key = SecretKey::random(&mut OsRng); // serialize with `::to_bytes()`
//! let public_key = secret_key.public_key();
//! let encrypting_key = EncryptingKey::new_with_mode(public_key, Mode::C1C2C3);
//! let plaintext = b"plaintext";
//! let ciphertext = encrypting_key.encrypt(plaintext)?;
//!
//! use sm2::pke::DecryptingKey;
//! // Decrypting
//! let decrypting_key = DecryptingKey::new_with_mode(secret_key.to_nonzero_scalar(), Mode::C1C2C3);
//! assert_eq!(decrypting_key.decrypt(&ciphertext)?, plaintext);
//!
//! // Encrypting ASN.1 DER
//! let ciphertext = encrypting_key.encrypt_der(plaintext)?;
//!
//! // Decrypting ASN.1 DER
//! assert_eq!(decrypting_key.decrypt_der(&ciphertext)?, plaintext);
//!
//! Ok(())
//! # }
//! ```
//!
//!
//!
use core::cmp::min;
use elliptic_curve::{
bigint::{Encoding, Uint, U256},
pkcs8::der::{
asn1::UintRef, Decode, DecodeValue, Encode, Length, Reader, Sequence, Tag, Writer,
},
};
use elliptic_curve::{
pkcs8::der::{asn1::OctetStringRef, EncodeValue},
sec1::{ModulusSize, ToEncodedPoint},
CurveArithmetic, FieldBytesSize, Result,
};
use primeorder::{AffinePoint, PrimeCurveParams};
use signature::digest::{FixedOutputReset, Output, Update};
#[cfg(feature = "arithmetic")]
mod decrypting;
#[cfg(feature = "arithmetic")]
mod encrypting;
#[cfg(feature = "arithmetic")]
pub use self::{decrypting::DecryptingKey, encrypting::EncryptingKey};
/// Modes for the cipher encoding/decoding.
#[derive(Clone, Copy, Debug)]
pub enum Mode {
/// old mode
C1C2C3,
/// new mode
C1C3C2,
}
/// Represents a cipher structure containing encryption-related data (asn.1 format).
///
/// The `Cipher` structure includes the coordinates of the elliptic curve point (`x`, `y`),
/// the digest of the message, and the encrypted cipher text.
pub struct Cipher<'a> {
x: U256,
y: U256,
digest: &'a [u8],
cipher: &'a [u8],
}
impl<'a> Sequence<'a> for Cipher<'a> {}
impl<'a> EncodeValue for Cipher<'a> {
fn value_len(&self) -> elliptic_curve::pkcs8::der::Result<Length> {
UintRef::new(&self.x.to_be_bytes())?.encoded_len()?
+ UintRef::new(&self.y.to_be_bytes())?.encoded_len()?
+ OctetStringRef::new(self.digest)?.encoded_len()?
+ OctetStringRef::new(self.cipher)?.encoded_len()?
}
fn encode_value(&self, writer: &mut impl Writer) -> elliptic_curve::pkcs8::der::Result<()> {
UintRef::new(&self.x.to_be_bytes())?.encode(writer)?;
UintRef::new(&self.y.to_be_bytes())?.encode(writer)?;
OctetStringRef::new(self.digest)?.encode(writer)?;
OctetStringRef::new(self.cipher)?.encode(writer)?;
Ok(())
}
}
impl<'a> DecodeValue<'a> for Cipher<'a> {
type Error = elliptic_curve::pkcs8::der::Error;
fn decode_value<R: Reader<'a>>(
decoder: &mut R,
header: elliptic_curve::pkcs8::der::Header,
) -> core::result::Result<Self, Self::Error> {
decoder.read_nested(header.length, |nr| {
let x = UintRef::decode(nr)?.as_bytes();
let y = UintRef::decode(nr)?.as_bytes();
let digest = OctetStringRef::decode(nr)?.into();
let cipher = OctetStringRef::decode(nr)?.into();
Ok(Cipher {
x: Uint::from_be_bytes(zero_pad_byte_slice(x)?),
y: Uint::from_be_bytes(zero_pad_byte_slice(y)?),
digest,
cipher,
})
})
}
}
/// Performs key derivation using a hash function and elliptic curve point.
fn kdf<D, C>(hasher: &mut D, kpb: AffinePoint<C>, c2: &mut [u8]) -> Result<()>
where
D: Update + FixedOutputReset,
C: CurveArithmetic + PrimeCurveParams,
FieldBytesSize<C>: ModulusSize,
AffinePoint<C>: ToEncodedPoint<C>,
{
let klen = c2.len();
let mut ct: i32 = 0x00000001;
let mut offset = 0;
let digest_size = D::output_size();
let mut ha = Output::<D>::default();
let encode_point = kpb.to_encoded_point(false);
while offset < klen {
hasher.update(encode_point.x().ok_or(elliptic_curve::Error)?);
hasher.update(encode_point.y().ok_or(elliptic_curve::Error)?);
hasher.update(&ct.to_be_bytes());
hasher.finalize_into_reset(&mut ha);
let xor_len = min(digest_size, klen - offset);
xor(c2, &ha, offset, xor_len);
offset += xor_len;
ct += 1;
}
Ok(())
}
/// XORs a portion of the buffer `c2` with a hash value.
fn xor(c2: &mut [u8], ha: &[u8], offset: usize, xor_len: usize) {
for i in 0..xor_len {
c2[offset + i] ^= ha[i];
}
}
/// Converts a byte slice to a fixed-size array, padding with leading zeroes if necessary.
pub(crate) fn zero_pad_byte_slice<const N: usize>(
bytes: &[u8],
) -> elliptic_curve::pkcs8::der::Result<[u8; N]> {
let num_zeroes = N
.checked_sub(bytes.len())
.ok_or_else(|| Tag::Integer.length_error())?;
// Copy input into `N`-sized output buffer with leading zeroes
let mut output = [0u8; N];
output[num_zeroes..].copy_from_slice(bytes);
Ok(output)
}