-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathdecrypting.rs
215 lines (184 loc) · 6.87 KB
/
decrypting.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use core::fmt::{self, Debug};
use crate::{
arithmetic::field::FieldElement, AffinePoint, EncodedPoint, FieldBytes, NonZeroScalar,
PublicKey, Scalar, SecretKey,
};
use alloc::{borrow::ToOwned, vec::Vec};
use elliptic_curve::{
bigint::U256,
ops::Reduce,
pkcs8::der::Decode,
sec1::{FromEncodedPoint, ToEncodedPoint},
subtle::{Choice, ConstantTimeEq},
Error, Group, Result,
};
use primeorder::PrimeField;
use signature::digest::{Digest, FixedOutputReset, Output, OutputSizeUser, Update};
use sm3::Sm3;
use super::{encrypting::EncryptingKey, kdf, Cipher, Mode};
/// Represents a decryption key used for decrypting messages using elliptic curve cryptography.
#[derive(Clone)]
pub struct DecryptingKey {
secret_scalar: NonZeroScalar,
encryting_key: EncryptingKey,
mode: Mode,
}
impl DecryptingKey {
/// Creates a new `DecryptingKey` from a `SecretKey` with the default decryption mode (`C1C3C2`).
pub fn new(secret_key: SecretKey) -> Self {
Self::new_with_mode(secret_key.to_nonzero_scalar(), Mode::C1C3C2)
}
/// Creates a new `DecryptingKey` from a non-zero scalar and sets the decryption mode.
pub fn new_with_mode(secret_scalar: NonZeroScalar, mode: Mode) -> Self {
Self {
secret_scalar,
encryting_key: EncryptingKey::new_with_mode(
PublicKey::from_secret_scalar(&secret_scalar),
mode,
),
mode,
}
}
/// Parse signing key from big endian-encoded bytes.
pub fn from_bytes(bytes: &FieldBytes) -> Result<Self> {
Self::from_slice(bytes)
}
/// Parse signing key from big endian-encoded byte slice containing a secret
/// scalar value.
pub fn from_slice(slice: &[u8]) -> Result<Self> {
let secret_scalar = NonZeroScalar::try_from(slice).map_err(|_| Error)?;
Self::from_nonzero_scalar(secret_scalar)
}
/// Create a signing key from a non-zero scalar.
pub fn from_nonzero_scalar(secret_scalar: NonZeroScalar) -> Result<Self> {
Ok(Self::new_with_mode(secret_scalar, Mode::C1C3C2))
}
/// Serialize as bytes.
pub fn to_bytes(&self) -> FieldBytes {
self.secret_scalar.to_bytes()
}
/// Borrow the secret [`NonZeroScalar`] value for this key.
///
/// # ⚠️ Warning
///
/// This value is key material.
///
/// Please treat it with the care it deserves!
pub fn as_nonzero_scalar(&self) -> &NonZeroScalar {
&self.secret_scalar
}
/// Get the [`EncryptingKey`] which corresponds to this [`DecryptingKey`].
pub fn encrypting_key(&self) -> &EncryptingKey {
&self.encryting_key
}
/// Decrypts a ciphertext in-place using the default digest algorithm (`Sm3`).
pub fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>> {
self.decrypt_digest::<Sm3>(ciphertext)
}
/// Decrypts a ciphertext in-place using the specified digest algorithm.
pub fn decrypt_digest<D>(&self, ciphertext: &[u8]) -> Result<Vec<u8>>
where
D: Digest + OutputSizeUser + Update + FixedOutputReset,
{
let mut digest = D::new();
decrypt(&self.secret_scalar, self.mode, &mut digest, ciphertext)
}
/// Decrypts a ciphertext in-place from ASN.1 format using the default digest algorithm (`Sm3`).
pub fn decrypt_der(&self, ciphertext: &[u8]) -> Result<Vec<u8>> {
self.decrypt_der_digest::<Sm3>(ciphertext)
}
/// Decrypts a ciphertext in-place from ASN.1 format using the specified digest algorithm.
pub fn decrypt_der_digest<D>(&self, ciphertext: &[u8]) -> Result<Vec<u8>>
where
D: Digest + OutputSizeUser + Update + FixedOutputReset,
{
let cipher = Cipher::from_der(ciphertext).map_err(elliptic_curve::pkcs8::Error::from)?;
let prefix: &[u8] = &[0x04];
let x: [u8; 32] = cipher.x.to_be_bytes();
let y: [u8; 32] = cipher.y.to_be_bytes();
let cipher = match self.mode {
Mode::C1C2C3 => [prefix, &x, &y, cipher.cipher, cipher.digest].concat(),
Mode::C1C3C2 => [prefix, &x, &y, cipher.digest, cipher.cipher].concat(),
};
Ok(self.decrypt_digest::<D>(&cipher)?.to_vec())
}
}
//
// Other trait impls
//
impl AsRef<EncryptingKey> for DecryptingKey {
fn as_ref(&self) -> &EncryptingKey {
&self.encryting_key
}
}
impl ConstantTimeEq for DecryptingKey {
fn ct_eq(&self, other: &Self) -> Choice {
self.secret_scalar.ct_eq(&other.secret_scalar)
}
}
impl Debug for DecryptingKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("DecryptingKey")
.field("private_key", &self.secret_scalar.as_ref())
.field("encrypting_key", &self.encrypting_key())
.finish_non_exhaustive()
}
}
/// Constant-time comparison
impl Eq for DecryptingKey {}
impl PartialEq for DecryptingKey {
fn eq(&self, other: &DecryptingKey) -> bool {
self.ct_eq(other).into()
}
}
fn decrypt<D>(secret_scalar: &Scalar, mode: Mode, hasher: &mut D, cipher: &[u8]) -> Result<Vec<u8>>
where
D: Update + OutputSizeUser + FixedOutputReset,
{
let q = U256::from_be_hex(FieldElement::MODULUS);
let c1_len = (q.bits() + 7) / 8 * 2 + 1;
// B1: get 𝐶1 from 𝐶
let (c1, c) = cipher.split_at(c1_len as usize);
let encoded_c1 = EncodedPoint::from_bytes(c1).map_err(Error::from)?;
// verify that point c1 satisfies the elliptic curve
let mut c1_point = AffinePoint::from_encoded_point(&encoded_c1).unwrap();
// B2: compute point 𝑆 = [ℎ]𝐶1
let s = c1_point * Scalar::reduce(U256::from_u32(FieldElement::S));
if s.is_identity().into() {
return Err(Error);
}
// B3: compute [𝑑𝐵]𝐶1 = (𝑥2, 𝑦2)
c1_point = (c1_point * secret_scalar).to_affine();
let digest_size = D::output_size();
let (c2, c3) = match mode {
Mode::C1C3C2 => {
let (c3, c2) = c.split_at(digest_size);
(c2, c3)
}
Mode::C1C2C3 => c.split_at(c.len() - digest_size),
};
// B4: compute 𝑡 = 𝐾𝐷𝐹(𝑥2 ∥ 𝑦2, 𝑘𝑙𝑒𝑛)
// B5: get 𝐶2 from 𝐶 and compute 𝑀′ = 𝐶2 ⊕ t
let mut c2 = c2.to_owned();
kdf(hasher, c1_point, &mut c2)?;
// compute 𝑢 = 𝐻𝑎𝑠ℎ(𝑥2 ∥ 𝑀′∥ 𝑦2).
let mut u = Output::<D>::default();
let encode_point = c1_point.to_encoded_point(false);
hasher.update(encode_point.x().ok_or(Error)?);
hasher.update(&c2);
hasher.update(encode_point.y().ok_or(Error)?);
hasher.finalize_into_reset(&mut u);
let checked = u
.iter()
.zip(c3)
.fold(0, |mut check, (&c3_byte, &c3checked_byte)| {
check |= c3_byte ^ c3checked_byte;
check
});
// If 𝑢 ≠ 𝐶3, output “ERROR” and exit
if checked != 0 {
return Err(Error);
}
// B7: output the plaintext 𝑀′.
Ok(c2.to_vec())
}