-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathencrypting.rs
192 lines (168 loc) · 6.46 KB
/
encrypting.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use core::fmt::Debug;
use crate::{
arithmetic::field::FieldElement, pke::kdf, AffinePoint, ProjectivePoint, PublicKey, Scalar, Sm2,
};
#[cfg(feature = "alloc")]
use alloc::{borrow::ToOwned, boxed::Box, vec::Vec};
use elliptic_curve::{
bigint::{RandomBits, Uint, Zero, U256},
ops::{MulByGenerator, Reduce},
pkcs8::der::Encode,
rand_core,
sec1::ToEncodedPoint,
Curve, Error, Group, Result,
};
use primeorder::PrimeField;
use sm3::Sm3;
use super::{Cipher, Mode};
use signature::digest::{Digest, FixedOutputReset, Output, OutputSizeUser, Update};
/// Represents an encryption key used for encrypting messages using elliptic curve cryptography.
#[derive(Clone, Debug)]
pub struct EncryptingKey {
public_key: PublicKey,
mode: Mode,
}
impl EncryptingKey {
/// Initialize [`EncryptingKey`] from PublicKey
pub fn new(public_key: PublicKey) -> Self {
Self::new_with_mode(public_key, Mode::C1C2C3)
}
/// Initialize [`EncryptingKey`] from PublicKey and set Encryption mode
pub fn new_with_mode(public_key: PublicKey, mode: Mode) -> Self {
Self { public_key, mode }
}
/// Initialize [`EncryptingKey`] from a SEC1-encoded public key.
pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self> {
let public_key = PublicKey::from_sec1_bytes(bytes).map_err(|_| Error)?;
Ok(Self::new(public_key))
}
/// Initialize [`EncryptingKey`] from an affine point.
///
/// Returns an [`Error`] if the given affine point is the additive identity
/// (a.k.a. point at infinity).
pub fn from_affine(affine: AffinePoint) -> Result<Self> {
let public_key = PublicKey::from_affine(affine).map_err(|_| Error)?;
Ok(Self::new(public_key))
}
/// Borrow the inner [`AffinePoint`] for this public key.
pub fn as_affine(&self) -> &AffinePoint {
self.public_key.as_affine()
}
/// Convert this [`EncryptingKey`] into the
/// `Elliptic-Curve-Point-to-Octet-String` encoding described in
/// SEC 1: Elliptic Curve Cryptography (Version 2.0) section 2.3.3
/// (page 10).
///
/// <http://www.secg.org/sec1-v2.pdf>
#[cfg(feature = "alloc")]
pub fn to_sec1_bytes(&self) -> Box<[u8]> {
self.public_key.to_sec1_bytes()
}
/// Encrypts a message using the encryption key.
///
/// This method calculates the digest using the `Sm3` hash function and then performs encryption.
pub fn encrypt(&self, msg: &[u8]) -> Result<Vec<u8>> {
self.encrypt_digest::<Sm3>(msg)
}
/// Encrypts a message and returns the result in ASN.1 format.
///
/// This method calculates the digest using the `Sm3` hash function and performs encryption,
/// then encodes the result in ASN.1 format.
pub fn encrypt_der(&self, msg: &[u8]) -> Result<Vec<u8>> {
self.encrypt_der_digest::<Sm3>(msg)
}
/// Encrypts a message using a specified digest algorithm.
pub fn encrypt_digest<D>(&self, msg: &[u8]) -> Result<Vec<u8>>
where
D: Digest + Update + FixedOutputReset,
{
let mut digest = D::new();
encrypt(&self.public_key, self.mode, &mut digest, msg)
}
/// Encrypts a message using a specified digest algorithm and returns the result in ASN.1 format.
pub fn encrypt_der_digest<D>(&self, msg: &[u8]) -> Result<Vec<u8>>
where
D: Update + OutputSizeUser + Digest + FixedOutputReset,
{
let mut digest = D::new();
let cipher = encrypt(&self.public_key, self.mode, &mut digest, msg)?;
let digest_size = <D as OutputSizeUser>::output_size();
let (_, cipher) = cipher.split_at(1);
let (x, cipher) = cipher.split_at(32);
let (y, cipher) = cipher.split_at(32);
let (digest, cipher) = match self.mode {
Mode::C1C2C3 => {
let (cipher, digest) = cipher.split_at(cipher.len() - digest_size);
(digest, cipher)
}
Mode::C1C3C2 => cipher.split_at(digest_size),
};
Ok(Cipher {
x: Uint::from_be_slice(x),
y: Uint::from_be_slice(y),
digest,
cipher,
}
.to_der()
.map_err(elliptic_curve::pkcs8::Error::from)?)
}
}
impl From<PublicKey> for EncryptingKey {
fn from(value: PublicKey) -> Self {
Self::new(value)
}
}
/// Encrypts a message using the specified public key, mode, and digest algorithm.
fn encrypt<D>(public_key: &PublicKey, mode: Mode, digest: &mut D, msg: &[u8]) -> Result<Vec<u8>>
where
D: Update + FixedOutputReset,
{
const N_BYTES: u32 = (Sm2::ORDER.bits() + 7) / 8;
#[allow(unused_assignments)]
let mut c1 = Default::default();
let mut c2 = msg.to_owned();
let mut hpb: AffinePoint;
loop {
// A1: generate a random number 𝑘 ∈ [1, 𝑛 − 1] with the random number generator
let k = Scalar::from_uint(next_k(N_BYTES)).unwrap();
// A2: compute point 𝐶1 = [𝑘]𝐺 = (𝑥1, 𝑦1)
let kg = ProjectivePoint::mul_by_generator(&k).to_affine();
// A3: compute point 𝑆 = [ℎ]𝑃𝐵 of the elliptic curve
let pb_point = public_key.as_affine();
let s = *pb_point * Scalar::reduce(U256::from_u32(FieldElement::S));
if s.is_identity().into() {
return Err(Error);
}
// A4: compute point [𝑘]𝑃𝐵 = (𝑥2, 𝑦2)
hpb = (s * k).to_affine();
// A5: compute 𝑡 = 𝐾𝐷𝐹(𝑥2||𝑦2, 𝑘𝑙𝑒𝑛)
// A6: compute 𝐶2 = 𝑀 ⊕ t
kdf(digest, hpb, &mut c2)?;
// // If 𝑡 is an all-zero bit string, go to A1.
// if all of t are 0, xor(c2) == c2
if c2.iter().zip(msg).any(|(pre, cur)| pre != cur) {
c1 = kg.to_encoded_point(false);
break;
}
}
let encode_point = hpb.to_encoded_point(false);
// A7: compute 𝐶3 = 𝐻𝑎𝑠ℎ(𝑥2||𝑀||𝑦2)
let mut c3 = Output::<D>::default();
digest.update(encode_point.x().ok_or(Error)?);
digest.update(msg);
digest.update(encode_point.y().ok_or(Error)?);
digest.finalize_into_reset(&mut c3);
// A8: output the ciphertext 𝐶 = 𝐶1||𝐶2||𝐶3.
Ok(match mode {
Mode::C1C2C3 => [c1.as_bytes(), &c2, &c3].concat(),
Mode::C1C3C2 => [c1.as_bytes(), &c3, &c2].concat(),
})
}
fn next_k(bit_length: u32) -> U256 {
loop {
let k = U256::random_bits(&mut rand_core::OsRng, bit_length);
if !bool::from(k.is_zero()) && k < Sm2::ORDER {
return k;
}
}
}