-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathsigning.rs
239 lines (205 loc) · 7 KB
/
signing.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//! Support for SM2DSA signing.
//!
//! ## Algorithm
//!
//! ```text
//! A1: set M~=ZA || M
//! A2: calculate e=Hv(M~)
//! A3: pick a random number k in [1, n-1] via a random number generator
//! A4: calculate the elliptic curve point (x1, y1)=[k]G
//! A5: calculate r=(e+x1) modn, return to A3 if r=0 or r+k=n
//! A6: calculate s=((1+dA)^(-1)*(k-r*dA)) modn, return to A3 if s=0
//! A7: the digital signature of M is (r, s)
//! ```
#![allow(non_snake_case)]
use super::{Signature, VerifyingKey};
use crate::{
DistId, FieldBytes, NonZeroScalar, ProjectivePoint, PublicKey, Scalar, SecretKey, Sm2,
};
use core::fmt::{self, Debug};
use elliptic_curve::{
Curve, FieldBytesEncoding, PrimeField,
array::typenum::Unsigned,
ops::{MulByGenerator, Reduce},
point::AffineCoordinates,
subtle::{Choice, ConstantTimeEq},
};
use signature::{
Error, KeypairRef, RandomizedSigner, Result, Signer,
hazmat::{PrehashSigner, RandomizedPrehashSigner},
rand_core::TryCryptoRng,
};
use sm3::Sm3;
#[cfg(all(feature = "pkcs8", feature = "alloc"))]
use crate::pkcs8::{
der::AnyRef,
spki::{AlgorithmIdentifier, AssociatedAlgorithmIdentifier, SignatureAlgorithmIdentifier},
};
/// SM2DSA secret key used for signing messages and producing signatures.
///
/// ## Usage
///
/// The [`signature`] crate defines the following traits which are the
/// primary API for signing:
///
/// - [`Signer`]: sign a message using this key
/// - [`PrehashSigner`]: sign the low-level raw output bytes of a message digest
#[derive(Clone)]
pub struct SigningKey {
/// Secret key.
secret_scalar: NonZeroScalar,
/// Verifying key for this signing key.
verifying_key: VerifyingKey,
}
impl SigningKey {
/// Create signing key from a signer's distinguishing identifier and
/// secret key.
pub fn new(distid: &DistId, secret_key: &SecretKey) -> Result<Self> {
Self::from_nonzero_scalar(distid, secret_key.to_nonzero_scalar())
}
/// Parse signing key from big endian-encoded bytes.
pub fn from_bytes(distid: &DistId, bytes: &FieldBytes) -> Result<Self> {
Self::from_slice(distid, bytes)
}
/// Parse signing key from big endian-encoded byte slice containing a secret
/// scalar value.
pub fn from_slice(distid: &DistId, slice: &[u8]) -> Result<Self> {
let secret_scalar = NonZeroScalar::try_from(slice).map_err(|_| Error::new())?;
Self::from_nonzero_scalar(distid, secret_scalar)
}
/// Create a signing key from a non-zero scalar.
pub fn from_nonzero_scalar(distid: &DistId, secret_scalar: NonZeroScalar) -> Result<Self> {
let public_key = PublicKey::from_secret_scalar(&secret_scalar);
let verifying_key = VerifyingKey::new(distid, public_key)?;
Ok(Self {
secret_scalar,
verifying_key,
})
}
/// Serialize as bytes.
pub fn to_bytes(&self) -> FieldBytes {
self.secret_scalar.to_bytes()
}
/// Borrow the secret [`NonZeroScalar`] value for this key.
///
/// # ⚠️ Warning
///
/// This value is key material.
///
/// Please treat it with the care it deserves!
pub fn as_nonzero_scalar(&self) -> &NonZeroScalar {
&self.secret_scalar
}
/// Get the [`VerifyingKey`] which corresponds to this [`SigningKey`].
pub fn verifying_key(&self) -> &VerifyingKey {
&self.verifying_key
}
/// Get the distinguishing identifier for this key.
#[cfg(feature = "alloc")]
pub fn distid(&self) -> &DistId {
self.verifying_key.distid()
}
}
//
// `*Signer` trait impls
//
impl PrehashSigner<Signature> for SigningKey {
fn sign_prehash(&self, prehash: &[u8]) -> Result<Signature> {
sign_prehash_rfc6979(&self.secret_scalar, prehash, &[])
}
}
impl RandomizedPrehashSigner<Signature> for SigningKey {
fn sign_prehash_with_rng<R: TryCryptoRng + ?Sized>(
&self,
rng: &mut R,
prehash: &[u8],
) -> Result<Signature> {
let mut data = FieldBytes::default();
rng.try_fill_bytes(&mut data).map_err(|_| Error::new())?;
sign_prehash_rfc6979(&self.secret_scalar, prehash, &data)
}
}
impl RandomizedSigner<Signature> for SigningKey {
fn try_sign_with_rng<R: TryCryptoRng + ?Sized>(
&self,
rng: &mut R,
msg: &[u8],
) -> Result<Signature> {
// A1: set M~=ZA || M
let hash = self.verifying_key.hash_msg(msg);
self.sign_prehash_with_rng(rng, &hash)
}
}
impl Signer<Signature> for SigningKey {
fn try_sign(&self, msg: &[u8]) -> Result<Signature> {
// A1: set M~=ZA || M
let hash = self.verifying_key.hash_msg(msg);
self.sign_prehash(&hash)
}
}
//
// Other trait impls
//
impl AsRef<VerifyingKey> for SigningKey {
fn as_ref(&self) -> &VerifyingKey {
&self.verifying_key
}
}
impl ConstantTimeEq for SigningKey {
fn ct_eq(&self, other: &Self) -> Choice {
self.secret_scalar.ct_eq(&other.secret_scalar)
}
}
impl Debug for SigningKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SigningKey")
.field("verifying_key", &self.verifying_key)
.finish_non_exhaustive()
}
}
/// Constant-time comparison
impl Eq for SigningKey {}
impl PartialEq for SigningKey {
fn eq(&self, other: &SigningKey) -> bool {
self.ct_eq(other).into()
}
}
impl KeypairRef for SigningKey {
type VerifyingKey = VerifyingKey;
}
/// Compute a signature using RFC6979 to deterministically derive `k`.
fn sign_prehash_rfc6979(secret_scalar: &Scalar, prehash: &[u8], data: &[u8]) -> Result<Signature> {
if prehash.len() != <Sm2 as Curve>::FieldBytesSize::USIZE {
return Err(Error::new());
}
// A2: calculate e=Hv(M~)
#[allow(deprecated)] // from_slice
let e = Scalar::reduce_bytes(FieldBytes::from_slice(prehash));
// A3: pick a random number k in [1, n-1] via a random number generator
let k = Scalar::from_repr(rfc6979::generate_k::<Sm3, _>(
&secret_scalar.to_repr(),
&FieldBytesEncoding::<Sm2>::encode_field_bytes(&Sm2::ORDER),
&e.to_bytes(),
data,
))
.unwrap();
// A4: calculate the elliptic curve point (x1, y1)=[k]G
let R = ProjectivePoint::mul_by_generator(&k).to_affine();
// A5: calculate r=(e+x1) modn, return to A3 if r=0 or r+k=n
let r = e + Scalar::reduce_bytes(&R.x());
if bool::from(r.is_zero() | (r + k).ct_eq(&Scalar::ZERO)) {
return Err(Error::new());
}
// A6: calculate s=((1+dA)^(-1)*(k-r*dA)) modn, return to A3 if s=0
let d_plus_1_inv =
Option::<Scalar>::from((secret_scalar + &Scalar::ONE).invert()).ok_or_else(Error::new)?;
let s = d_plus_1_inv * (k - (r * secret_scalar));
// A7: the digital signature of M is (r, s)
Signature::from_scalars(r, s)
}
#[cfg(all(feature = "alloc", feature = "pkcs8"))]
impl SignatureAlgorithmIdentifier for SigningKey {
type Params = AnyRef<'static>;
const SIGNATURE_ALGORITHM_IDENTIFIER: AlgorithmIdentifier<Self::Params> =
Signature::ALGORITHM_IDENTIFIER;
}