-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteractive_gpt.py
335 lines (282 loc) · 9.8 KB
/
interactive_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch
import torch.nn as nn
from torch.nn import functional as F
import argparse
import os
import sys
import wave
from piper.voice import PiperVoice
# hyperparameters
batch_size = 64
block_size = 256
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
# print(f"Using {device}")
torch.manual_seed(1337)
# Load data
with open("./datasets/tiny_shakespeare.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: "".join([itos[i] for i in l])
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
)
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# Instantiate model
model = GPTLanguageModel().to(device)
# Command-line arguments
parser = argparse.ArgumentParser(
description="Train or Generate Text with GPT Model and TTS"
)
parser.add_argument("--train", action="store_true", help="Train the model")
parser.add_argument(
"--generate", action="store_true", help="Generate text from the model"
)
parser.add_argument(
"--tts", action="store_true", help="Convert generated text to speech"
)
parser.add_argument(
"--stream",
action="store_true",
help="Stream audio in real-time while generating text",
)
parser.add_argument(
"--model_path",
type=str,
default="store/attention.pth",
help="Path to save/load the model weights",
)
parser.add_argument(
"--starter_text",
type=str,
default="",
help="Starting text for text generation (leave empty for random start)",
)
parser.add_argument(
"--output_size",
type=int,
default=-1,
help="Number of tokens to generate (default: -1 for infinite generation)",
)
parser.add_argument(
"--output_path",
type=str,
default="./output/generated_text.txt",
help="Path to save the generated text output",
)
parser.add_argument(
"--voice_model",
type=str,
default="./voices/en_US-ljspeech-medium.onnx",
help="Path to the Piper voice model",
)
parser.add_argument(
"--audio_path",
type=str,
default="./output/generated_audio.wav",
help="Path to save the generated audio file",
)
args = parser.parse_args()
if args.train:
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# Train loop
for iter in range(max_iters):
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# Save model
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
torch.save(model.state_dict(), args.model_path)
print(f"Model saved to {args.model_path}")
# Load TTS model
def synthesize_audio(text, voice_model, audio_path):
print("Loading TTS model...")
voice = PiperVoice.load(voice_model)
print("Synthesizing audio...")
with wave.open(audio_path, "w") as wav_file:
voice.synthesize(text, wav_file)
print(f"Audio saved to {audio_path}")
if args.generate:
if os.path.exists(args.model_path):
model.load_state_dict(torch.load(args.model_path, weights_only=True))
print(f"Model loaded from {args.model_path}")
else:
print(f"Model file {args.model_path} not found. Exiting.")
exit()
# Use starter text or default to random
start_text = args.starter_text
if not start_text:
context = torch.zeros((1, 1), dtype=torch.long, device=device) # Random starter
else:
try:
context = torch.tensor(
[[stoi[ch] for ch in start_text]], dtype=torch.long, device=device
)
except KeyError as e:
print(f"Error: Character '{e.args[0]}' not in vocabulary. Exiting.")
exit()
# Output size
output_size = args.output_size
# Output file path
output_path = args.output_path
os.makedirs(os.path.dirname(output_path), exist_ok=True)
print("Generated text (press Ctrl+C to stop if generating infinitely):")
with open(output_path, "w") as f:
token_count = 0
generated_text = ""
try:
while True:
idx_cond = context[:, -block_size:]
logits, _ = model(idx_cond)
logits = logits[:, -1, :]
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
context = torch.cat((context, idx_next), dim=1)
# Decode and output the new token
next_char = decode([idx_next.item()])
sys.stdout.write(next_char)
sys.stdout.flush()
f.write(next_char)
generated_text += next_char
token_count += 1
if output_size > 0 and token_count >= output_size:
break
except KeyboardInterrupt:
print("\nGeneration stopped by user.")
print(f"\n\nGenerated text saved to {output_path}")
# Text-to-Speech (TTS)
if args.tts:
synthesize_audio(generated_text, args.voice_model, args.audio_path)