-
Notifications
You must be signed in to change notification settings - Fork 627
/
Copy pathapp.py
171 lines (155 loc) · 6.71 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import random, time
from flask import Flask, render_template, request, redirect, url_for, flash, send_from_directory, jsonify
from werkzeug.utils import secure_filename
import os
from PyPDF2 import PdfReader
from flask_sqlalchemy import SQLAlchemy
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key'
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///papers.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db = SQLAlchemy(app)
class Paper(db.Model):
id = db.Column(db.Integer, primary_key=True)
filename = db.Column(db.String(120), nullable=False)
text = db.Column(db.Text, nullable=True)
def update_papers_from_uploads():
for _tries in range(5):
try:
uploads_dir = app.config['UPLOAD_FOLDER']
file_list = os.listdir(uploads_dir)
print("Files in uploads folder:", file_list)
for filename in file_list:
if filename.lower().endswith('.pdf'):
# Check if file is already in the DB
if not Paper.query.filter_by(filename=filename).first():
print("Processing file:", filename)
file_path = os.path.join(uploads_dir, filename)
extracted_text = ""
try:
reader = PdfReader(file_path)
for page in reader.pages:
text = page.extract_text()
if text:
extracted_text += text
except Exception as e:
flash(f'Error processing {filename}: {e}')
continue
if not extracted_text.strip():
print(f"Warning: No text extracted from {filename}")
else:
print(f"Extracted {len(extracted_text)} characters from {filename}")
new_paper = Paper(filename=filename, text=extracted_text)
db.session.add(new_paper)
db.session.commit()
return
except Exception as e:
print("WEB SERVER LOAD EXCEPTION", e, str(e))
time.sleep(random.randint(5, 15))
return
#raise Exception("FAILED TO UPDATE")
# Load a pre-trained sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2')
@app.route('/update', methods=['GET'])
def update_on_demand():
update_papers_from_uploads()
return jsonify({"message": "Uploads folder processed successfully."})
@app.route('/')
def index():
update_papers_from_uploads()
papers = Paper.query.all()
return render_template('index.html', papers=papers)
@app.route('/upload', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
if 'pdf' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['pdf']
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
extracted_text = ""
try:
reader = PdfReader(file_path)
for page in reader.pages:
text = page.extract_text()
if text:
extracted_text += text
except Exception as e:
flash(f'Error processing PDF: {e}')
new_paper = Paper(filename=filename, text=extracted_text)
db.session.add(new_paper)
db.session.commit()
flash('File uploaded and processed successfully!')
return redirect(url_for('index'))
return render_template('upload.html')
@app.route('/search')
def search():
query = request.args.get('q', '')
if query:
papers = Paper.query.all()
query_embedding = model.encode([query])
paper_texts = [paper.text for paper in papers if paper.text]
if not paper_texts:
return render_template('search.html', papers=[], query=query)
paper_embeddings = model.encode(paper_texts)
similarities = cosine_similarity(query_embedding, paper_embeddings)[0]
papers_with_scores = list(zip([p for p in papers if p.text], similarities))
papers_sorted = sorted(papers_with_scores, key=lambda x: x[1], reverse=True)
return render_template('search.html', papers=papers_sorted, query=query)
return render_template('search.html', papers=[], query=query)
@app.route('/api/search')
def api_search():
query = request.args.get('q', '')
if not query:
return jsonify({'error': 'No query provided'}), 400
papers = Paper.query.all()
if not papers:
return jsonify({'query': query, 'results': []})
query_embedding = model.encode([query])
paper_texts = [paper.text for paper in papers if paper.text]
if not paper_texts:
return jsonify({'query': query, 'results': []})
paper_embeddings = model.encode(paper_texts)
similarities = cosine_similarity(query_embedding, paper_embeddings)[0]
papers_with_scores = list(zip([p for p in papers if p.text], similarities))
papers_sorted = sorted(papers_with_scores, key=lambda x: x[1], reverse=True)
results = []
for paper, score in papers_sorted:
pdf_url = url_for('uploaded_file', filename=paper.filename, _external=True)
results.append({
'id': paper.id,
'filename': paper.filename,
'similarity': float(score),
'pdf_url': pdf_url
})
return jsonify({'query': query, 'results': results})
@app.route('/uploads/<path:filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename, mimetype='application/pdf')
@app.route('/view/<int:paper_id>')
def view_pdf(paper_id):
paper = Paper.query.get_or_404(paper_id)
pdf_url = url_for('uploaded_file', filename=paper.filename, _external=True)
return render_template('view.html', paper=paper, pdf_url=pdf_url)
def run_app(port=5000):
# Reset the database by removing the existing file
db_path = "papers.db"
if os.path.exists("instance/" + db_path):
os.remove("instance/" + db_path)
with app.app_context():
db.create_all()
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
app.run(debug=False, port=port)
if __name__ == '__main__':
run_app()