-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredictive_modeling.py
324 lines (294 loc) · 10.5 KB
/
predictive_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# System
import argparse
import os
import warnings
from functools import partial, update_wrapper
# Data science
import pandas as pd
from joblib import parallel_backend
from src.config import CONSTANTS, MODELING
from src.logger import get_logger
from src.utils import (
fit_test_model,
optimize_model,
read_list,
read_pickle,
write_pickle,
)
# Constants
DATA_HOME, SEED, TIMEOUT, N_TRIALS, cv = (
CONSTANTS.DATA_HOME,
CONSTANTS.SEED,
MODELING.TIMEOUT,
MODELING.N_TRIALS,
MODELING.CV,
)
# Models and configurations
models, random_model_grids, optuna_model_grids, evaluators = (
MODELING.models,
MODELING.random_model_grids,
MODELING.optuna_model_grids,
MODELING.evaluators,
)
def main():
parser = argparse.ArgumentParser(
description="Run ML paper experiment.",
epilog="""Example of use:
python predictive_modeling.py --ad # run predictive modeling for dataset
python predictive_modeling.py --ra # run predictive modeling for dataset
python predictive_modeling.py --ad --optuna # run predictive modeling for dataset, using optuna
python predictive_modeling.py --ad --random # run predictive modeling for dataset, using random
""",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--ad",
dest="is_data",
action="store_true",
)
parser.add_argument(
"--ra",
dest="is_data",
action="store_false",
)
parser.add_argument(
"-o",
"--optuna",
dest="is_optuna",
action="store_true",
)
parser.add_argument(
"-r",
"--random",
dest="is_optuna",
action="store_false",
)
parser.add_argument(
"-t",
"--timeout",
type=int,
default=TIMEOUT,
help="Timeout in seconds for Optuna optimization.",
)
parser.add_argument(
"-n",
"--n_trials",
"--n-trials",
type=int,
default=N_TRIALS,
help="Number of trials for Optuna optimization, number of iterations in random optimization.",
)
parser.add_argument(
"--debug",
action="store_true",
help="Run in debug mode.",
)
parser.add_argument(
"--overwrite", action="store_true", help="Overwrite the existing results."
)
parser.set_defaults(
is_data=True,
debug=False,
is_optuna=True,
overwrite=False,
)
args = parser.parse_args()
if args.is_data:
data_tag = "ad"
proc_data = pd.read_csv(os.path.join(DATA_HOME, "AD_processed_final.csv"))
target_col, patient_id = "endpt_lb_easi1_total_score", "patient_id"
block_list = [
"ft_sl_actarm",
"ft_sl_actarmcd",
"ft_sl_ageu",
"ft_sl_arm",
"ft_sl_armcd",
"ft_sl_domain",
"ft_sl_dthdtc",
"ft_sl_ethnic",
"ft_sl_invid",
"ft_sl_invnam",
"ft_sl_rfstdtc",
"ft_sl_rfendtc",
"ft_sl_rficdtc",
"ft_sl_rfpendtc",
"ft_sl_rfxendtc",
"ft_sl_rfxstdtc",
"ft_sl_rowid",
"ft_sl_dthfl",
"ft_sl_subjid",
"ft_sl_studyid",
"ft_cc_easi1_total_score",
] + proc_data.filter(regex="^ft_cc").columns.to_list()
else:
data_tag = "ra"
proc_data = pd.read_csv(os.path.join(DATA_HOME, "RA_processed_final.csv"))
target_col, patient_id = "endpt_lb_das28__crp_", "patient_id"
proc_data = proc_data.dropna(
subset=[target_col, "ft_lb_c_reactive_protein__mg_l_"]
).reset_index(drop=True)
block_list = (
[
"ft_sl_actarm",
"ft_sl_actarmcd",
"ft_sl_ageu",
"ft_sl_arm",
"ft_sl_armcd",
"ft_sl_domain",
"ft_sl_dthdtc",
"ft_sl_dthfl",
"ft_sl_ethnic",
"ft_sl_invid",
"ft_sl_invnam",
"ft_sl_rfendtc",
"ft_sl_rficdtc",
"ft_sl_rfpendtc",
"ft_sl_rfstdtc",
"ft_sl_rfxendtc",
"ft_sl_rfxstdtc",
"ft_sl_studyid",
"ft_sl_subjid",
"ft_sl_siteid",
]
+ proc_data.filter(regex="ft_eff").columns.to_list()
+ ["endpt_lb_das28__esr_"]
)
opt_type = "optuna" if args.is_optuna else "random"
# Getting logger
logger = get_logger(f"logs/{data_tag}_{opt_type}.log")
logger.info(f"Running {data_tag.upper()} analysis with {opt_type} optimization!")
# Getting features used for modeling
features = proc_data.filter(regex="^ft").dropna(axis="columns").columns.to_list()
features_to_use = [f for f in features if f not in block_list]
logger.info(
f"{data_tag.upper()} dataset contains {proc_data.shape[0]} samples and {proc_data.shape[1]} columns.."
)
# Getting `X`s
X_train, X_test = (
proc_data.loc[proc_data["split"] == "TRAIN", features_to_use],
proc_data.loc[proc_data["split"] == "TEST", features_to_use],
)
# Creating `y`s
y_train, y_test = (
proc_data.loc[proc_data["split"] == "TRAIN", target_col],
proc_data.loc[proc_data["split"] == "TEST", target_col],
)
logger.info(
f"It dataset contains:\n\t"
f"TRAIN: {X_train.shape[1]} features and {X_train.shape[0]} samples!\n\t"
f"TEST: {X_test.shape[1]} features and {X_test.shape[0]} samples!\n\t"
)
# Read features from files
sel_fs_dict = {}
if data_tag == "ra":
feature_set_tags = [
"lasso_features_no_rwd_missing",
"spearman_features_no_rwd_missing",
"sfs_features_no_rwd_missing",
"sbs_features_no_rwd_missing",
"sbs_aic_features_no_rwd_missing",
"sfs_aic_features_no_rwd_missing",
"multi_stage_0.05_no_rwd_missing" # "Multi-stage set"
"multi_stage_features_0.05_f_num_12_no_rwd_missing", # "Narrow set"
"multi_stage_features_0.05_f_num_14_no_rwd_missing", # "Moderate set"
"multi_stage_features_0.05_f_num_20_no_rwd_missing_no_mmp3", # "Wide set without MMP3"
"multi_stage_features_0.05_f_num_20_no_rwd_missing", # "Wide set"
"crp_esr_features",
]
else:
feature_set_tags = [
"lasso_features",
"spearman_features",
"sfs_features",
"sbs_features",
"sfs_aic_features",
"sbs_aic_features",
"multi_stage_features_0.05", # "Multi-stage set"
"multi_stage_features_0.05_f_num_14", # "Narrow set"
"multi_stage_features_0.05_f_num_20", # "Moderate set"
"multi_stage_features_0.05_f_num_31", # "Wide set"
]
for fs_tag in feature_set_tags:
fn = os.path.join(
DATA_HOME, f"{data_tag}_selected_features", f"{data_tag}_{fs_tag}.txt"
)
sel_fs_dict[fs_tag.replace("_features", "").replace(".", "_")] = read_list(fn)
# Specify parameters of model optimization
if opt_type == "optuna":
opt_config = {
"timeout": args.timeout,
"n_trials": args.n_trials,
}
else:
opt_config = {"n_iter": args.n_trials}
sorted_evals = [f"{t}_{s}" for s in evaluators.keys() for t in ["TRAIN", "TEST"]]
# To store
fitted_models = {m: {f: None for f in sel_fs_dict.keys()} for m in models.keys()}
summary = pd.DataFrame(columns=sel_fs_dict.keys(), index=models.keys())
# Load the results if they exist
evals_fn = os.path.join(DATA_HOME, f"{data_tag}_results", opt_type, "evals.pkl")
if os.path.exists(evals_fn):
evals = read_pickle(evals_fn)
else:
evals = {m: {f: None for f in sel_fs_dict.keys()} for m in models.keys()}
warnings.simplefilter(action="ignore", category=UserWarning)
for fs_tag, _ in sel_fs_dict.items():
# Create a folder with the name of the feature selection method
if args.debug:
fs_folder = os.path.join(DATA_HOME, "debug")
else:
fs_folder = os.path.join(DATA_HOME, f"{data_tag}_results", opt_type, fs_tag)
if not os.path.exists(fs_folder):
os.makedirs(fs_folder)
logger.info(
f"CURRENTLY RUNNING FEATURE SELECTION: {fs_tag} ({len(sel_fs_dict[fs_tag])})"
)
for m_tag, _ in models.items():
if (
not args.overwrite
and not args.debug
and evals.get(m_tag, {}).get(fs_tag, None) is not None
):
logger.info(f"Model {m_tag} already fitted, skipping..")
continue
logger.info(f"Running tuning for model: {m_tag}")
fitted_tuner, tuner_best_params, tuner_best_score = optimize_model(
model_tag=m_tag,
X_train=X_train,
y_train=y_train,
features=sel_fs_dict[fs_tag],
cv=cv,
opt_type=opt_type,
**opt_config,
)
logger.info(
f" Best params for {m_tag} with {fs_tag}: {tuner_best_params}, score: {tuner_best_score:.3f}"
)
logger.info(f"Running training for model: {m_tag}")
fitted_model, eval_model = fit_test_model(
model=fitted_tuner.best_estimator_,
model_params=fitted_tuner.best_params_,
X_train=X_train,
X_test=X_test,
y_train=y_train,
y_test=y_test,
features=sel_fs_dict[fs_tag],
)
fitted_models[m_tag][fs_tag] = fitted_model
summary.loc[m_tag, fs_tag] = "; ".join(
[f"{k}: {eval_model[k]:.3f}" for k in sorted_evals]
)
evals[m_tag][fs_tag] = eval_model
# Save model as pickle file
fn = os.path.join(fs_folder, f"{m_tag}.pkl")
write_pickle(fitted_model, fn, overwrite=True)
logger.info(f"Model {m_tag} with {fs_tag} saved as pickle file to {fn}\n")
if not args.debug:
# Update evals as pickle
write_pickle(evals, evals_fn, overwrite=True)
logger.info(f"Finished running feature selection: {fs_tag}\n\n")
logger.info("Results:")
logger.info(summary)
logger.info("Finished!")
if __name__ == "__main__":
main()