|
2 | 2 | @info "Starting implicit SINDy tests" |
3 | 3 | @testset "ISInDy" begin |
4 | 4 |
|
5 | | - #@info "Nonlinear Implicit System" |
6 | | - ## Create a test problem |
7 | | - #function simple(u, p, t) |
8 | | - # return [(2.0u[2]^2 - 3.0)/(1.0 + u[1]^2); -u[1]^2/(2.0 + u[2]^2); (1-u[2])/(1+u[3]^2)] |
9 | | - #end |
10 | | -# |
11 | | - #u0 = [2.37; 1.58; -3.10] |
12 | | - #tspan = (0.0, 10.0) |
13 | | - #prob = ODEProblem(simple, u0, tspan) |
14 | | - #sol = solve(prob, Tsit5(), saveat = 0.1) |
15 | | -# |
16 | | - ## Create the differential data |
17 | | - #X = sol[:,:] |
18 | | - #DX = similar(X) |
19 | | - #for (i, xi) in enumerate(eachcol(X)) |
20 | | - # DX[:, i] = simple(xi, [], 0.0) |
21 | | - #end |
22 | | -# |
23 | | - ## Create a basis |
24 | | - #@variables u[1:3] |
25 | | - #polys = ModelingToolkit.Operation[] |
26 | | - ## Lots of basis functions |
27 | | - #for i ∈ 0:5 |
28 | | - # if i == 0 |
29 | | - # push!(polys, u[1]^0) |
30 | | - # end |
31 | | - # for ui in u |
32 | | - # if i > 0 |
33 | | - # push!(polys, ui^i) |
34 | | - # end |
35 | | - # end |
36 | | - #end |
37 | | -# |
38 | | - #basis= Basis(polys, u) |
39 | | -# |
40 | | - #opt = ADM(1e-2) |
41 | | - #Ψ = ISInDy(X, DX, basis, opt = opt, maxiter = 100) |
42 | | -# |
43 | | - ## Transform into ODE System |
44 | | - #sys = ODESystem(Ψ) |
45 | | - #dudt = ODEFunction(sys) |
46 | | - #ps = parameters(Ψ) |
47 | | - #print_equations(Ψ, show_parameter = true) |
48 | | -# |
49 | | - #@test all(get_error(Ψ) .< 1e-6) |
50 | | - #@test length(ps) == 11 |
51 | | - #@test get_sparsity(Ψ) == [4; 3; 4] |
52 | | - # |
53 | | - ## Simulate |
54 | | - #estimator = ODEProblem(dudt, u0, tspan, ps) |
55 | | - #sol_ = solve(estimator, Tsit5(), saveat = 0.1) |
56 | | - #@test sol[:,:] ≈ sol_[:,:] |
57 | | - #@test abs.(ps) ≈ abs.(Float64[-1/3 ; -1/3 ; -1.00 ; 2/3; 1.00 ;0.5 ;0.5 ; 1.0; 1.0; -1.0; 1.0]) |
| 5 | + @info "Nonlinear Implicit System" |
| 6 | + # Create a test problem |
| 7 | + function simple(u, p, t) |
| 8 | + return [(2.0u[2]^2 - 3.0)/(1.0 + u[1]^2); -u[1]^2/(2.0 + u[2]^2); (1-u[2])/(1+u[3]^2)] |
| 9 | + end |
| 10 | + |
| 11 | + u0 = [2.37; 1.58; -3.10] |
| 12 | + tspan = (0.0, 10.0) |
| 13 | + prob = ODEProblem(simple, u0, tspan) |
| 14 | + sol = solve(prob, Tsit5(), saveat = 0.1) |
| 15 | + |
| 16 | + # Create the differential data |
| 17 | + X = sol[:,:] |
| 18 | + DX = similar(X) |
| 19 | + for (i, xi) in enumerate(eachcol(X)) |
| 20 | + DX[:, i] = simple(xi, [], 0.0) |
| 21 | + end |
| 22 | + |
| 23 | + # Create a basis |
| 24 | + @variables u[1:3] |
| 25 | + polys = ModelingToolkit.Operation[] |
| 26 | + # Lots of basis functions |
| 27 | + for i ∈ 0:5 |
| 28 | + if i == 0 |
| 29 | + push!(polys, u[1]^0) |
| 30 | + end |
| 31 | + for ui in u |
| 32 | + if i > 0 |
| 33 | + push!(polys, ui^i) |
| 34 | + end |
| 35 | + end |
| 36 | + end |
| 37 | + |
| 38 | + basis= Basis(polys, u) |
| 39 | + |
| 40 | + opt = ADM(1e-2) |
| 41 | + Ψ = ISInDy(X, DX, basis, opt, maxiter = 100) |
| 42 | + |
| 43 | + # Transform into ODE System |
| 44 | + sys = ODESystem(Ψ) |
| 45 | + dudt = ODEFunction(sys) |
| 46 | + ps = parameters(Ψ) |
| 47 | + print_equations(Ψ, show_parameter = true) |
| 48 | + |
| 49 | + @test all(get_error(Ψ) .< 1e-6) |
| 50 | + @test length(ps) == 11 |
| 51 | + @test get_sparsity(Ψ) == [4; 3; 4] |
| 52 | + |
| 53 | + # Simulate |
| 54 | + estimator = ODEProblem(dudt, u0, tspan, ps) |
| 55 | + sol_ = solve(estimator, Tsit5(), saveat = 0.1) |
| 56 | + @test sol[:,:] ≈ sol_[:,:] |
| 57 | + @test abs.(ps) ≈ abs.(Float64[-1/3 ; -1/3 ; -1.00 ; 2/3; 1.00 ;0.5 ;0.5 ; 1.0; 1.0; -1.0; 1.0]) |
58 | 58 |
|
59 | 59 |
|
60 | 60 | @info "Michaelis-Menten-Kinetics" |
|
0 commit comments