Skip to content

STLSQ method results in different models from pySINDy? #475

@xk-y

Description

@xk-y

Hi! I was starting to use STLSQ method to create a SINDy-based model. I try the example here, but remove the noise in the reference data. When I compare the model parameters, I found the STLSQ method in Julia and pySINDy gives different results. I tried to keep all hyperparameters the same. Do you have any idea why it happens? I suppose pySINDy and DataDrivenDiffEq.jl should give the same result as the STLSQ algorithm are the same.

Julia code:

using DataDrivenDiffEq
using LinearAlgebra
using OrdinaryDiffEq
using DataDrivenSparse


function pendulum(u, p, t)
    x = u[2]
    y = -9.81sin(u[1]) - 0.3u[2]^3 - 3.0 * cos(u[1]) - 10.0 * exp(-((t - 5.0) / 5.0)^2)
    return [x; y]
end

u0 = [0.99π; -1.0]
tspan = (0.0, 15.0)
prob = ODEProblem(pendulum, u0, tspan)
sol = solve(prob, Tsit5(), saveat = 0.01);

X = sol[:, :] #+ 0.2 .* randn(rng, size(sol));
ts = sol.t;

using JLD2
JLD2.jldsave("data.jld";X,ts) ### save the data for Python usage


function create_prob(X, ts,i)
    (X = X, t = ts )
end

probnames = Tuple(Symbol.(["prob$i" for i in 1:1]));
probdata = Tuple([create_prob(X, ts,i) for i in 1:1]);
probtuple = NamedTuple{probnames}(probdata);
prob = DataDrivenDiffEq.ContinuousDataset(probtuple);


#prob = ContinuousDataDrivenProblem(X, ts)
    

@parameters  t 
@variables u(t)[1:2] 

h = Num[polynomial_basis(u, 5);]

basis = Basis(h, u);

λs = (1e-5)
opt = STLSQ(λs)
res = solve(prob, basis, opt)

system = get_basis(res)
params = get_parameter_map(system)
println(system) 
println(params)

The model I got from Julia is:

Model ##Basis#465 with 2 equations
States : (u(t))[1] (u(t))[2]
Parameters : 42
Independent variable: t
Equations
Differential(t)((u(t))[1]) = p₁ + p₁₂*((u(t))[2]^2) + p₁₆*((u(t))[2]^3) + p₁₉*((u(t))[2]^4) + p₂*(u(t))[1] + p₂₁*((u(t))[2]^5) + p₃*((u(t))[1]^2) + p₄*((u(t))[1]^3) + p₅*((u(t))[1]^4) + p₆*((u(t))[1]^5) + p₇*(u(t))[2] + p₁₃*((u(t))[2]^2)*(u(t))[1] + p₁₀*((u(t))[1]^3)*(u(t))[2] + p₁₄*((u(t))[1]^2)*((u(t))[2]^2) + p₁₅*((u(t))[1]^3)*((u(t))[2]^2) + p₁₈*((u(t))[1]^2)*((u(t))[2]^3) + p₁₇*((u(t))[2]^3)*(u(t))[1] + p₉*((u(t))[1]^2)*(u(t))[2] + p₁₁*((u(t))[1]^4)*(u(t))[2] + p₂₀*((u(t))[2]^4)*(u(t))[1] + p₈*(u(t))[1]*(u(t))[2]
Differential(t)((u(t))[2]) = p₂₂ + p₂₃*(u(t))[1] + p₂₄*((u(t))[1]^2) + p₂₅*((u(t))[1]^3) + p₂₆*((u(t))[1]^4) + p₂₇*((u(t))[1]^5) + p₂₈*(u(t))[2] + p₃₃*((u(t))[2]^2) + p₃₇*((u(t))[2]^3) + p₄₀*((u(t))[2]^4) + p₄₂*((u(t))[2]^5) + p₂₉*(u(t))[1]*(u(t))[2] + p₃₅*((u(t))[1]^2)*((u(t))[2]^2) + p₃₉*((u(t))[1]^2)*((u(t))[2]^3) + p₃₀*((u(t))[1]^2)*(u(t))[2] + p₃₁*((u(t))[1]^3)*(u(t))[2] + p₃₂*((u(t))[1]^4)*(u(t))[2] + p₃₆*((u(t))[1]^3)*((u(t))[2]^2) + p₃₄*((u(t))[2]^2)*(u(t))[1] + p₃₈*((u(t))[2]^3)*(u(t))[1] + p₄₁*((u(t))[2]^4)*(u(t))[1]

Pair{SymbolicUtils.BasicSymbolic{Real}, Float64}[p₁ => 0.0730131366, p₂ => 0.0834717146, p₃ => 0.0149782394, p₄ => -0.0059705709, p₅ => -0.0017038288, p₆ => -0.0001075822, p₇ => 1.0212420262, p₈ => 0.0228230317, p₉ => 0.0040984396, p₁₀ => 4.16304e-5, p₁₁ => -2.02122e-5, p₁₂ => 0.0037135607, p₁₃ => 0.0034812525, p₁₄ => 0.0006379738, p₁₅ => 1.52776e-5, p₁₆ => 0.0026753519, p₁₇ => 0.0005161771, p₁₈ => 5.01583e-5, p₁₉ => 0.0001611863, p₂₀ => 6.49419e-5, p₂₁ => -4.48301e-5, p₂₂ => -14.5630872419, p₂₃ => -16.616734041, p₂₄ => -2.9673310169, p₂₅ => 1.1849735762, p₂₆ => 0.3376741619, p₂₇ => 0.0213132928, p₂₈ => -3.9165878933, p₂₉ => -4.3162794295, p₃₀ => -0.819936348, p₃₁ => -0.0193343773, p₃₂ => 0.0031036009, p₃₃ => -0.551816404, p₃₄ => -0.5307240406, p₃₅ => -0.1191590027, p₃₆ => -0.0044727192, p₃₇ => -0.5195042192, p₃₈ => -0.0723909027, p₃₉ => -0.0066535181, p₄₀ => -0.0399888287, p₄₁ => -0.0133952208, p₄₂ => 0.0077426642]

Python code:

import numpy as np
import pysindy as ps
import h5py

X = d["X"][:]
times = d['ts'][:]
dt = 0.01

optimizer = ps.STLSQ(threshold=1e-5)
feature_library = ps.PolynomialLibrary(degree=5)
model = ps.SINDy(feature_names=["x", "y"],optimizer=optimizer,feature_library=feature_library)
model.fit([X], t=dt, multiple_trajectories = True)
model.print(precision=10)

The model I got from Python is:

(x)' = -0.0007809696 1 + -0.0008913440 x + 0.9991483762 y + -0.0001892916 x^2 + -0.0008836917 x y + -0.0002849399 y^2 + -0.0000113477 x^3 + -0.0002544056 x^2 y + -0.0001793808 x y^2 + -0.0000349313 y^3 + -0.0000207300 x^3 y + -0.0000688229 x^2 y^2 + 0.0000031815 x y^3 + -0.0000064892 x^3 y^2
(y)' = -14.5342725185 1 + -16.5809246400 x + -3.9699650420 y + -2.9592877785 x^2 + -4.3170609722 x y + -0.5520409493 y^2 + 1.1846939143 x^3 + -0.8008512434 x^2 y + -0.5160813109 x y^2 + -0.5070188768 y^3 + 0.3374568507 x^4 + -0.0137858781 x^3 y + -0.1128667395 x^2 y^2 + -0.0672355163 x y^3 + -0.0364527735 y^4 + 0.0212981524 x^5 + 0.0035045963 x^4 y + -0.0038914762 x^3 y^2 + -0.0060928204 x^2 y^3 + -0.0128738435 x y^4 + 0.0081038320 y^5

I could find the model parameters are not the same.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions