@@ -3,15 +3,16 @@ module IntegralsCubature
3
3
using Integrals, Cubature
4
4
5
5
import Integrals: transformation_if_inf, scale_x, scale_x!
6
+ import Cubature: INDIVIDUAL, PAIRED, L1, L2, LINF
6
7
7
8
abstract type AbstractCubatureJLAlgorithm <: SciMLBase.AbstractIntegralAlgorithm end
8
9
"""
9
10
CubatureJLh()
10
11
11
12
Multidimensional h-adaptive integration from Cubature.jl.
12
13
`error_norm` specifies the convergence criterion for vector valued integrands.
13
- Defaults to `Cubature .INDIVIDUAL`, other options are
14
- `Cubature .PAIRED`, `Cubature .L1`, `Cubature .L2`, or `Cubature .LINF`.
14
+ Defaults to `IntegralsCubature .INDIVIDUAL`, other options are
15
+ `IntegralsCubature .PAIRED`, `IntegralsCubature .L1`, `IntegralsCubature .L2`, or `IntegralsCubature .LINF`.
15
16
16
17
## References
17
18
@@ -39,8 +40,8 @@ This method is based on repeatedly doubling the degree of the cubature rules,
39
40
until convergence is achieved.
40
41
The used cubature rule is a tensor product of Clenshaw–Curtis quadrature rules.
41
42
`error_norm` specifies the convergence criterion for vector valued integrands.
42
- Defaults to `Cubature .INDIVIDUAL`, other options are
43
- `Cubature .PAIRED`, `Cubature .L1`, `Cubature .L2`, or `Cubature .LINF`.
43
+ Defaults to `IntegralsCubature .INDIVIDUAL`, other options are
44
+ `IntegralsCubature .PAIRED`, `IntegralsCubature .L1`, `IntegralsCubature .L2`, or `IntegralsCubature .LINF`.
44
45
"""
45
46
struct CubatureJLp <: AbstractCubatureJLAlgorithm
46
47
error_norm:: Int32
@@ -183,9 +184,6 @@ function Integrals.__solvebp_call(prob::IntegralProblem,
183
184
SciMLBase. build_solution (prob, alg, val, err, retcode = ReturnCode. Success)
184
185
end
185
186
186
-
187
-
188
187
export CubatureJLh, CubatureJLp
189
- export Cubature. INDIVIDUAL, Cubature. PAIRED, Cubature. L1, Cubature. L2, Cubature. LINF
190
188
191
189
end
0 commit comments