Skip to content

Combining a MatrixOperator mass_matrix with a jac_prototype #2929

@bmxam

Description

@bmxam

Describe the bug 🐞

Using OrdinaryDiffEq, I’m trying to solve an ODE involving a mass matrix that (may) evolve depending on the solution, the time, the parameters. So I set up a SciMLOperators.MatrixOperator and provided it to the ODEFunction. So far, so good.

The problem I’m facing is that if I provide a jac_prototype (of my rhs function) to the ODEFunction, then the solve errors (see stack below). Without jac_prototype, on a MWE, everything is fine.

It may be related to #2000 .

Expected behavior

The call to solve should not error.

Minimal Reproducible Example 👇

using OrdinaryDiffEq
using SparseArrays
using SparseDiffTools

const M_mwe = sparse([1.0 2.0; 0.0 1.0])

function update_func(A, u, p, t)
    return M_mwe
end

function run()
    mass_matrix = MatrixOperator(M_mwe; update_func = update_func)
    f!(du, u, p, t) = du .= u
    alg = ImplicitEuler()
    tspan = (0.0, 1.0)
    u0 = ones(2)

    # Without jac_prototype
    odeFunction = ODEFunction(f!; mass_matrix)
    prob = ODEProblem(odeFunction, u0, tspan)
    solve(prob, alg) #-------> OK

    # With jac_prototype
    jac_prototype = sparse([1.0 0.0; 0.0 1.0])
    colorvec = [1, 1]
    odeFunction = ODEFunction(f!; mass_matrix, jac_prototype, colorvec)
    prob = ODEProblem(odeFunction, u0, tspan)
    solve(prob, alg) #-------> KO
end

run()

Error & Stacktrace ⚠️

MethodError: no method matching keys(::MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}})
The function `keys` exists, but no method is defined for this combination of argument types.

Closest candidates are:
  keys(::Cmd)
   @ Base process.jl:716
  keys(::Base.TermInfo)
   @ Base terminfo.jl:232
  keys(::LibGit2.GitTree)
   @ Revise .julia/packages/Revise/p9Zlq/src/git.jl:52
  ...

Stacktrace:
  [1] pairs(collection::MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}})
    @ Base ./abstractdict.jl:178
  [2] findall(testf::ComposedFunction{typeof(!), typeof(iszero)}, A::MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}})
    @ Base ./array.jl:2700
  [3] prepare_user_sparsity(ad_alg::AutoForwardDiff{nothing, ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}}, prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem})
    @ OrdinaryDiffEqDifferentiation .julia/packages/OrdinaryDiffEqDifferentiation/DE4z5/src/alg_utils.jl:120
  [4] prepare_alg(alg::ImplicitEuler{0, AutoForwardDiff{nothing, Nothing}, Nothing, NLNewton{Rational{Int64}, Rational{Int64}, Rational{Int64}, Nothing}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!)}, u0::Vector{Float64}, p::SciMLBase.NullParameters, prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem})
    @ OrdinaryDiffEqDifferentiation .julia/packages/OrdinaryDiffEqDifferentiation/DE4z5/src/alg_utils.jl:53
  [5] solve_up(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, sensealg::Nothing, u0::Vector{Float64}, p::SciMLBase.NullParameters, args::ImplicitEuler{0, AutoForwardDiff{nothing, Nothing}, Nothing, NLNewton{Rational{Int64}, Rational{Int64}, Rational{Int64}, Nothing}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!)}; kwargs::@Kwargs{})
    @ DiffEqBase .julia/packages/DiffEqBase/qvEPa/src/solve.jl:1200
  [6] solve_up(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, sensealg::Nothing, u0::Vector{Float64}, p::SciMLBase.NullParameters, args::ImplicitEuler{0, AutoForwardDiff{nothing, Nothing}, Nothing, NLNewton{Rational{Int64}, Rational{Int64}, Rational{Int64}, Nothing}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!)})
    @ DiffEqBase .julia/packages/DiffEqBase/qvEPa/src/solve.jl:1183
  [7] solve(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, args::ImplicitEuler{0, AutoForwardDiff{nothing, Nothing}, Nothing, NLNewton{Rational{Int64}, Rational{Int64}, Rational{Int64}, Nothing}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!)}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{true}, kwargs::@Kwargs{})
    @ DiffEqBase .julia/packages/DiffEqBase/qvEPa/src/solve.jl:1096
  [8] solve(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, SciMLBase.NullParameters, ODEFunction{true, SciMLBase.FullSpecialize, var"#f!#run##1", MatrixOperator{Float64, SparseMatrixCSC{Float64, Int64}, SciMLOperators.FilterKwargs{typeof(update_func), Tuple{}}, SciMLOperators.FilterKwargs{typeof(SciMLOperators.DEFAULT_UPDATE_FUNC), Tuple{}}}, Nothing, Nothing, Nothing, Nothing, Nothing, SparseMatrixCSC{Float64, Int64}, SparseMatrixCSC{Float64, Int64}, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Vector{Int64}, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, args::ImplicitEuler{0, AutoForwardDiff{nothing, Nothing}, Nothing, NLNewton{Rational{Int64}, Rational{Int64}, Rational{Int64}, Nothing}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!)})
    @ DiffEqBase .julia/packages/DiffEqBase/qvEPa/src/solve.jl:1086
  [9] run()
    @ Main ./REPL[11]:18
 [10] top-level scope
    @ REPL[12]:1

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
⌃ [1dea7af3] OrdinaryDiffEq v6.101.0
  [47a9eef4] SparseDiffTools v2.26.0
  [2f01184e] SparseArrays v1.12.0
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
  [47edcb42] ADTypes v1.20.0
  [7d9f7c33] Accessors v0.1.43
  [79e6a3ab] Adapt v4.4.0
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.22.0
  [4c555306] ArrayLayouts v1.12.2
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
⌃ [70df07ce] BracketingNonlinearSolve v1.3.0
  [2a0fbf3d] CPUSummary v0.2.7
  [d360d2e6] ChainRulesCore v1.26.0
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.18.1
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [187b0558] ConstructionBase v1.6.0
  [adafc99b] CpuId v0.3.1
⌅ [864edb3b] DataStructures v0.18.22
⌃ [2b5f629d] DiffEqBase v6.176.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.7.12
  [ffbed154] DocStringExtensions v0.9.5
  [4e289a0a] EnumX v1.0.5
  [f151be2c] EnzymeCore v0.8.17
  [d4d017d3] ExponentialUtilities v1.28.0
  [e2ba6199] ExprTools v0.1.10
  [55351af7] ExproniconLite v0.10.14
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [442a2c76] FastGaussQuadrature v1.1.0
  [a4df4552] FastPower v1.2.0
  [1a297f60] FillArrays v1.15.0
  [6a86dc24] FiniteDiff v2.29.0
  [f6369f11] ForwardDiff v1.3.0
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [46192b85] GPUArraysCore v0.2.0
  [c145ed77] GenericSchur v0.5.6
⌃ [86223c79] Graphs v1.13.1
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [3587e190] InverseFunctions v0.1.17
  [92d709cd] IrrationalConstants v0.2.6
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.7.1
  [ae98c720] Jieko v0.2.1
  [ba0b0d4f] Krylov v0.10.3
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.9.4
  [87fe0de2] LineSearch v0.1.4
  [d3d80556] LineSearches v7.5.1
⌃ [7ed4a6bd] LinearSolve v3.26.0
  [2ab3a3ac] LogExpFunctions v0.3.29
  [1914dd2f] MacroTools v0.5.16
  [d125e4d3] ManualMemory v0.1.8
  [bb5d69b7] MaybeInplace v0.1.4
  [2e0e35c7] Moshi v0.3.7
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.10.0
  [77ba4419] NaNMath v1.1.3
⌃ [8913a72c] NonlinearSolve v4.10.0
⌅ [be0214bd] NonlinearSolveBase v1.14.0
⌃ [5959db7a] NonlinearSolveFirstOrder v1.7.0
⌃ [9a2c21bd] NonlinearSolveQuasiNewton v1.8.0
⌃ [26075421] NonlinearSolveSpectralMethods v1.3.0
  [bac558e1] OrderedCollections v1.8.1
⌃ [1dea7af3] OrdinaryDiffEq v6.101.0
⌃ [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.4.0
⌃ [6ad6398a] OrdinaryDiffEqBDF v1.9.0
⌃ [bbf590c4] OrdinaryDiffEqCore v1.26.2
⌃ [50262376] OrdinaryDiffEqDefault v1.7.0
⌃ [4302a76b] OrdinaryDiffEqDifferentiation v1.11.0
⌃ [9286f039] OrdinaryDiffEqExplicitRK v1.3.0
⌃ [e0540318] OrdinaryDiffEqExponentialRK v1.7.0
⌃ [becaefa8] OrdinaryDiffEqExtrapolation v1.7.0
⌃ [5960d6e9] OrdinaryDiffEqFIRK v1.14.0
⌃ [101fe9f7] OrdinaryDiffEqFeagin v1.3.0
⌃ [d3585ca7] OrdinaryDiffEqFunctionMap v1.4.0
⌃ [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.4.0
⌃ [9f002381] OrdinaryDiffEqIMEXMultistep v1.6.0
⌃ [521117fe] OrdinaryDiffEqLinear v1.4.0
⌃ [1344f307] OrdinaryDiffEqLowOrderRK v1.5.0
⌃ [b0944070] OrdinaryDiffEqLowStorageRK v1.5.0
⌃ [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.12.0
⌃ [c9986a66] OrdinaryDiffEqNordsieck v1.3.0
⌃ [5dd0a6cf] OrdinaryDiffEqPDIRK v1.5.0
⌃ [5b33eab2] OrdinaryDiffEqPRK v1.3.0
⌃ [04162be5] OrdinaryDiffEqQPRK v1.3.0
⌃ [af6ede74] OrdinaryDiffEqRKN v1.4.0
⌃ [43230ef6] OrdinaryDiffEqRosenbrock v1.14.0
⌃ [2d112036] OrdinaryDiffEqSDIRK v1.6.0
⌃ [669c94d9] OrdinaryDiffEqSSPRK v1.5.0
⌃ [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.5.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.4.0
⌃ [fa646aed] OrdinaryDiffEqSymplecticRK v1.6.0
⌃ [b1df2697] OrdinaryDiffEqTsit5 v1.4.0
⌃ [79d7bb75] OrdinaryDiffEqVerner v1.5.0
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [f517fe37] Polyester v0.7.18
  [1d0040c9] PolyesterWeave v0.2.2
  [d236fae5] PreallocationTools v0.4.34
  [aea7be01] PrecompileTools v1.3.3
  [21216c6a] Preferences v1.5.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.39.0
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.16
  [94e857df] SIMDTypes v0.1.0
⌃ [0bca4576] SciMLBase v2.99.0
  [19f34311] SciMLJacobianOperators v0.1.11
⌅ [c0aeaf25] SciMLOperators v0.4.0
  [431bcebd] SciMLPublic v1.0.0
  [53ae85a6] SciMLStructures v1.7.0
  [efcf1570] Setfield v1.1.2
⌃ [727e6d20] SimpleNonlinearSolve v2.7.0
  [699a6c99] SimpleTraits v0.9.5
  [ce78b400] SimpleUnPack v1.1.0
  [47a9eef4] SparseDiffTools v2.26.0
  [0a514795] SparseMatrixColorings v0.4.23
  [276daf66] SpecialFunctions v2.6.1
  [aedffcd0] Static v1.3.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.15
  [1e83bf80] StaticArraysCore v1.4.4
  [10745b16] Statistics v1.11.1
  [7792a7ef] StrideArraysCore v0.5.8
  [2efcf032] SymbolicIndexingInterface v0.3.46
  [8290d209] ThreadingUtilities v0.5.5
  [a759f4b9] TimerOutputs v0.5.29
  [781d530d] TruncatedStacktraces v1.4.0
  [3a884ed6] UnPack v1.0.2
  [19fa3120] VertexSafeGraphs v0.2.0
  [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0
  [856f044c] MKL_jll v2025.2.0+0
  [efe28fd5] OpenSpecFun_jll v0.5.6+0
  [1317d2d5] oneTBB_jll v2022.0.0+1
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.7.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0
  [4af54fe1] LazyArtifacts v1.11.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.12.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [a63ad114] Mmap v1.11.0
  [ca575930] NetworkOptions v1.3.0
  [44cfe95a] Pkg v1.12.0
  [de0858da] Printf v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [1a1011a3] SharedArrays v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.12.0
  [f489334b] StyledStrings v1.11.0
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.3.0+1
  [deac9b47] LibCURL_jll v8.15.0+0
  [e37daf67] LibGit2_jll v1.9.0+0
  [29816b5a] LibSSH2_jll v1.11.3+1
  [14a3606d] MozillaCACerts_jll v2025.5.20
  [4536629a] OpenBLAS_jll v0.3.29+0
  [05823500] OpenLibm_jll v0.8.7+0
  [458c3c95] OpenSSL_jll v3.5.4+0
  [bea87d4a] SuiteSparse_jll v7.8.3+2
  [83775a58] Zlib_jll v1.3.1+2
  [8e850b90] libblastrampoline_jll v5.15.0+0
  [8e850ede] nghttp2_jll v1.64.0+1
  [3f19e933] p7zip_jll v17.7.0+0
  • Output of versioninfo()
Julia Version 1.12.2
Commit ca9b6662be4 (2025-11-20 16:25 UTC)
Build Info:
  Official https://julialang.org release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 12 × Intel(R) Xeon(R) w3-2423
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, sapphirerapids)
  GC: Built with stock GC
Threads: 1 default, 1 interactive, 1 GC (on 12 virtual cores)

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions