|
| 1 | +# An example implementation of the interface |
| 2 | + |
| 3 | +In this tutorial we will implement the SciMLStructures.jl interface for a parameter |
| 4 | +object. This is useful when differentiating through ODE solves using SciMLSensitivity.jl |
| 5 | +and only part of the parameters are differentiable. |
| 6 | + |
| 7 | +```@example |
| 8 | +using OrdinaryDiffEqTsit5 |
| 9 | +using LinearAlgebra |
| 10 | +
|
| 11 | +mutable struct SubproblemParameters{P, Q, R} |
| 12 | + p::P # tunable |
| 13 | + q::Q |
| 14 | + r::R |
| 15 | +end |
| 16 | +
|
| 17 | +mutable struct Parameters{P, C} |
| 18 | + subparams::P |
| 19 | + coeffs::C # tunable matrix |
| 20 | +end |
| 21 | +
|
| 22 | +# the rhs is `du[i] = p[i] * u[i]^2 + q[i] * u[i] + r[i] * t` for i in 1:length(subparams) |
| 23 | +# and `du[length(subparams)+1:end] .= coeffs * u` |
| 24 | +function rhs!(du, u, p::Parameters, t) |
| 25 | + for (i, subpars) in enumerate(p.subparams) |
| 26 | + du[i] = subpars.p * u[i]^2 + subpars.q * u[i] + subpars.r * t |
| 27 | + end |
| 28 | + N = length(p.subparams) |
| 29 | + mul!(view(du, (N+1):(length(du))), p.coeffs, u) |
| 30 | + return nothing |
| 31 | +end |
| 32 | +
|
| 33 | +u = sin.(0.1:0.1:1.0) |
| 34 | +subparams = [SubproblemParameters(0.1i, 0.2i, 0.3i) for i in 1:5] |
| 35 | +p = Parameters(subparams, cos.([0.1i+0.33j for i in 1:5, j in 1:10])) |
| 36 | +tspan = (0.0, 1.0) |
| 37 | +
|
| 38 | +prob = ODEProblem(rhs!, u, tspan, p) |
| 39 | +solve(prob, Tsit5()) |
| 40 | +``` |
| 41 | + |
| 42 | +The ODE solves fine. Now let's try to differentiate with respect to the tunable parameters. |
| 43 | + |
| 44 | +```@example |
| 45 | +using Zygote |
| 46 | +using SciMLSensitivity |
| 47 | +
|
| 48 | +# 5 subparams[i].p, 50 elements in coeffs |
| 49 | +Zygote.gradient(0.1ones(55)) do tunables |
| 50 | + subpars = [SubproblemParameters(tunables[i], subpar.q, subpar.r) for (i, subpar) in enumerate(p.subparams)] |
| 51 | + coeffs = reshape(tunables[6:end], size(p.coeffs)) |
| 52 | + newp = Parameters(subpars, coeffs) |
| 53 | + newprob = remake(prob; p = newp) |
| 54 | + sol = solve(prob, Tsit5()) |
| 55 | + return sum(sol.u[end]) |
| 56 | +end |
| 57 | +``` |
| 58 | + |
| 59 | +SciMLSensitivity does not know how to handle the parameter object, because it does not |
| 60 | +implement the SciMLStructures interface. |
| 61 | + |
| 62 | +```@example |
| 63 | +import SciMLStructures as SS |
| 64 | +
|
| 65 | +# Mark the struct as a SciMLStructure |
| 66 | +SS.isscimlstructure(::Parameters) = true |
| 67 | +# It is mutable |
| 68 | +SS.ismutablescimlstructure(::Parameters) = true |
| 69 | +
|
| 70 | +# Only contains `Tunable` portion |
| 71 | +# We could also add a `Constants` portion to contain the values that are |
| 72 | +# not tunable. The implementation would be similar to this one. |
| 73 | +SS.hasportion(::SS.Tunable, ::Parameters) = true |
| 74 | +
|
| 75 | +function SS.canonicalize(::SS.Tunable, p::Parameters) |
| 76 | + # concatenate all tunable values into a single vector |
| 77 | + buffer = vcat([subpar.p for subpar in p.subparams], vec(p.coeffs)) |
| 78 | +
|
| 79 | + # repack takes a new vector of the same length as `buffer`, and constructs |
| 80 | + # a new `Parameters` object using the values from the new vector for tunables |
| 81 | + # and retaining old values for other parameters. This is exactly what replace does, |
| 82 | + # so we can use that instead. |
| 83 | + repack = let p = p |
| 84 | + function repack(newbuffer) |
| 85 | + SS.replace(SS.Tunable(), p, newbuffer) |
| 86 | + end |
| 87 | + end |
| 88 | + # the canonicalized vector, the repack function, and a boolean indicating |
| 89 | + # whether the buffer aliases values in the parameter object (here, it doesn't) |
| 90 | + return buffer, repack, false |
| 91 | +end |
| 92 | +
|
| 93 | +function SS.replace(::SS.Tunable, p::Parameters, newbuffer) |
| 94 | + N = length(p.subparams) + length(p.coeffs) |
| 95 | + @assert length(newbuffer) == N |
| 96 | + subparams = [SubproblemParameters(newbuffer[i], subpar.q, subpar.r) for (i, subpar) in enumerate(p.subparams)] |
| 97 | + coeffs = reshape(view(newbuffer, (length(p.subparams)+1):length(newbuffer)), size(p.coeffs)) |
| 98 | + return Parameters(subparams, coeffs) |
| 99 | +end |
| 100 | +
|
| 101 | +function SS.replace!(::SS.Tunable, p::Parameters, newbuffer) |
| 102 | + N = length(p.subparams) + length(p.coeffs) |
| 103 | + @assert length(newbuffer) == N |
| 104 | + for (subpar, val) in zip(p.subparams, newbuffer) |
| 105 | + subpar.p = val |
| 106 | + end |
| 107 | + copyto!(coeffs, view(newbuffer, (length(p.subparams)+1):length(newbuffer))) |
| 108 | + return p |
| 109 | +end |
| 110 | +``` |
| 111 | + |
| 112 | +Now, we should be able to differentiate through the ODE solve. |
| 113 | + |
| 114 | +```@example |
| 115 | +Zygote.gradient(0.1ones(length(SS.canonicalize(SS.Tunable(), p)[1]))) do tunables |
| 116 | + newp = SS.replace(SS.Tunable(), p, tunables) |
| 117 | + newprob = remake(prob; p = newp) |
| 118 | + sol = solve(newprob, Tsit5()) |
| 119 | + return sum(sol.u[end]) |
| 120 | +end |
| 121 | +``` |
0 commit comments