-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfifo-tdsp.py
197 lines (150 loc) · 4.97 KB
/
fifo-tdsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import random
import time
from Queue import PriorityQueue
import matplotlib
import numpy as np
matplotlib.use("tkagg")
import pandas as pd
class Graph(object):
def __init__(self, vertices, edges, weights):
self.vertices = vertices
self.edges = edges
self.weights = weights
self.in_adj = list()
self.out_adj = list()
for v in vertices:
self.in_adj.append(list())
self.out_adj.append(list())
for e in edges:
self.in_adj[e[1]].append(e)
self.out_adj[e[0]].append(e)
class Pair(object):
def __init__(self, tau, g, v):
self.tau = tau
self.g = g
self.v = v
def __cmp__(self, other):
return cmp(self.g[self.tau[self.v]], other.g[other.tau[other.v]])
def __str__(self):
return str((self.v, self.tau[self.v], self.g[self.tau[self.v]]))
def __repr__(self):
return str((self.v, self.tau[self.v], self.g[self.tau[self.v]]))
def time_refinement(Gt, vs, ve, T):
ts = T[0]
te = T[-1]
g = dict()
g[vs] = dict()
for t in T:
g[vs][t] = t
tau = dict()
tau[vs] = ts
for v in Gt.vertices:
if v != vs:
g[v] = dict()
for t in T:
g[v][t] = np.inf
tau[v] = ts
Q_ = [Pair(tau, g[i], i) for i in Gt.vertices]
Q = PriorityQueue()
for p in Q_:
Q.put(p)
while len(Q.queue) >= 2:
pair_i = Q.get()
pair_k = Q.get()
Q.put(pair_k)
tmp = [Gt.weights[e](g[pair_k.v][tau[pair_k.v]]) for e in Gt.in_adj[pair_i.v]]
delta = np.min(tmp) if len(tmp) > 0 else np.inf
tau_i_first = np.max([t for t in T if g[pair_i.v][t] <= (g[pair_k.v][tau[pair_k.v]] + delta)])
for e in Gt.out_adj[pair_i.v]:
gj_first = dict()
for t in range(pair_i.tau[pair_i.v], tau_i_first + 1):
gj_first[t] = pair_i.g[t] + Gt.weights[e](pair_i.g[t])
g[e[1]][t] = min(g[e[1]][t], gj_first[t])
tmpQ = PriorityQueue()
for p in Q.queue:
tmpQ.put(p)
Q = tmpQ
tau[pair_i.v] = tau_i_first
if tau[pair_i.v] >= te:
if pair_i.v == ve:
return g
else:
Q.put(Pair(tau, pair_i.g, pair_i.v))
return g
def path_selector(Gt, g, vs, ve, t_star):
vj = ve
p_star = list()
while vj != vs:
for e in Gt.in_adj[vj]:
if g[e[0]][t_star] + Gt.weights[e](g[e[0]][t_star]) == g[vj][t_star]:
vj = e[0]
break
p_star.append([e[0], e[1], g[e[1]][t_star]])
return list(reversed(p_star))
def algorithm(Gt, vs, ve, T):
g = time_refinement(Gt, vs, ve, T)
if sum(np.isinf(g[ve].values())) == 0:
t_star = np.argmin([g[ve][t] - t for t in T])
p_star = path_selector(Gt, g, vs, ve, t_star)
return t_star, p_star
else:
return None
if __name__ == "__main__":
# Given v_s and v_e and a time window T, find the best time within T to depart from v_s and the path along which one
# can arrive at v_e with the minimum travel time
# algorithm
# Input:
# Gt = time dependent graph
# vs = starting vertex
# ve = destination vertex
# T = start time interval
# Output:
# t_ = optimal starting time
# p_ = optimal vs-ve path. [vi, vj, time to reach vj]
# Weights:
# the weight of an edge v(i,j) depends on time t and it is defined by the function wi_j
def w0_2(t):
if 0 <= t < 5:
return 5
if t >= 10:
return 25
if 5 <= t < 10:
return 4 * t - 15
def w0_1(t):
return 10
def w1_2(t):
return 10
def w1_3(t):
return 25
def w2_3(t):
return 10 if t >= 40 else 42 - 4.0 / 5.0 * t
start_time = time.time()
T = range(0, 61)
vertices = {0: 0, 1: 1, 2: 2, 3: 3}
vs = 0
ve = 3
edges = [(0, 2), (1, 2), (0, 1), (1, 3), (2, 3)]
weights = {(0, 2): w0_2, (1, 2): w1_2, (0, 1): w0_1, (1, 3): w1_3, (2, 3): w2_3}
Gt = Graph(vertices, edges, weights)
print algorithm(Gt, vs, ve, T)
print time.time() - start_time
res = []
for ii in range(1, 100):
T2 = range(0, ii)
vertices2 = dict()
for i in range(ii): vertices2[i] = i
l = len(vertices2)
edges2 = [(i, j) for i in range(l) for j in range(l) if random.random() < 0.5]
weights2 = dict()
all_w = [w0_2, w1_2, w0_1, w1_3, w2_3]
for e in edges2:
weights2[e] = all_w[random.randint(0, 4)]
Gt = Graph(vertices2, edges2, weights2)
start_time = time.time()
p = algorithm(Gt, random.randint(0, ii - 1), random.randint(0, ii - 1), T2)
end = time.time() - start_time
item = [ii, end, len(vertices2), len(edges2), len(T2)]
print (p, item)
res.append(item)
df = pd.DataFrame(res, columns=["i", "time_elapsed", "n", "m", "T"])
df["time_elapsed"].plot()