-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathft_gpus-mutator.py
172 lines (156 loc) · 5.49 KB
/
ft_gpus-mutator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Trianed from checkpoint
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
)
from trl import SFTTrainer
target = "kamailio-parse_msg"
new_model = f"llama-2-7b-structured-{target}-mix-hex-mutator"
dataset_path = "DATASET PATH"
device = Accelerator().local_process_index
@dataclass
class ScriptArguments:
model_name: Optional[str] = field(
default="meta-llama/Llama-2-7b-chat-hf", metadata={"help": "the model name"}
)
num_train_epochs: Optional[int] = field(
default=20, metadata={"help": "Number of training epochs"}
)
per_device_train_batch_size: Optional[int] = field(
default=1, metadata={"help": "the per device train batch size"}
)
seq_length: Optional[int] = field(
default=1400, metadata={"help": "the sequence length"}
)
max_steps: Optional[int] = field(
default=-1,
metadata={"help": "Number of training steps (overrides num_train_epochs)"},
)
logging_steps: Optional[int] = field(
default=25, metadata={"help": "the logging frequency"}
)
save_steps: Optional[int] = field(
default=0, metadata={"help": "the saving frequency"}
)
gradient_accumulation_steps: Optional[int] = field(
default=1, metadata={"help": "the gradient accumulation steps"}
)
gradient_checkpointing: Optional[bool] = field(
default=True, metadata={"help": "whether to use gradient checkpointing"}
)
group_by_length: Optional[bool] = field(
default=False, metadata={"help": "whether to group by length"}
)
packing: Optional[bool] = field(
default=True, metadata={"help": "whether to use packing for SFTTrainer"}
)
lora_alpha: Optional[float] = field(
default=16, metadata={"help": "the lora alpha parameter"}
)
lora_dropout: Optional[float] = field(
default=0.05, metadata={"help": "the lora dropout parameter"}
)
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
learning_rate: Optional[float] = field(
default=2e-4, metadata={"help": "the learning rate"}
)
lr_scheduler_type: Optional[str] = field(
default="cosine", metadata={"help": "the lr scheduler type"}
)
num_warmup_steps: Optional[int] = field(
default=30, metadata={"help": "the number of warmup steps"}
)
weight_decay: Optional[float] = field(
default=0.001, metadata={"help": "the weight decay"}
)
optimizer_type: Optional[str] = field(
default="paged_adamw_32bit", metadata={"help": "the optimizer type"}
)
output_dir: Optional[str] = field(
default="./results", metadata={"help": "the output directory"}
)
log_freq: Optional[int] = field(
default=1, metadata={"help": "the logging frequency"}
)
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
peft_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type="CAUSAL_LM",
)
training_args = TrainingArguments(
output_dir=script_args.output_dir,
num_train_epochs=script_args.num_train_epochs,
per_device_train_batch_size=script_args.per_device_train_batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
learning_rate=script_args.learning_rate,
logging_steps=script_args.logging_steps,
max_steps=script_args.max_steps,
report_to="tensorboard",
save_steps=script_args.save_steps,
group_by_length=script_args.group_by_length,
lr_scheduler_type=script_args.lr_scheduler_type,
warmup_steps=script_args.num_warmup_steps,
optim=script_args.optimizer_type,
fp16=True,
bf16=False,
remove_unused_columns=False,
run_name="sft_llama2",
ddp_find_unused_parameters=False,
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
torch_dtype=torch.bfloat16,
bnb_4bit_compute_dtype=torch.bfloat16,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(
script_args.model_name, trust_remote_code=True, padding=True
)
tokenizer.pad_token = tokenizer.bos_token
tokenizer.padding_side = "left" # Fix weird overflow issue with fp16 training
# tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
# Load dataset (you can process it here)
dataset = load_dataset(
"csv",
data_files=dataset_path,
split="train",
)
base_model = AutoModelForCausalLM.from_pretrained(
script_args.model_name,
quantization_config=bnb_config,
device_map={"": Accelerator().local_process_index},
trust_remote_code=True,
use_auth_token=True,
)
base_model.config.use_cache = False
trainer = SFTTrainer(
model=base_model,
train_dataset=dataset,
dataset_text_field="context",
peft_config=peft_config,
packing=script_args.packing,
max_seq_length=script_args.seq_length,
tokenizer=tokenizer,
args=training_args,
)
trainer.train() # resume_from_checkpoint=script_args.output_dir + "/final_checkpoint"
output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
trainer.save_model(new_model)
trainer.model.save_pretrained(output_dir)