-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_batch.cpp
301 lines (282 loc) · 7.86 KB
/
nn_batch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright (c) 2013, Manuel Blum
// All rights reserved.
#include <iostream>
#include <fstream>
#include <assert.h>
#include "nn.h"
// default parameters for Rprop
const RpropParams NeuralNet::p = {0.1, 50, 1e-6, 0.5, 1.2};
NeuralNet::NeuralNet(Eigen::VectorXi &topology)
{
assert(topology.size() > 1);
init_layer(topology);
init_weights(0.5);
autoscale_reset();
}
NeuralNet::NeuralNet(const char *filename)
{
std::ifstream fs(filename, std::ios::in | std::ios::binary);
if (fs)
{
// number of layers
int num_layers;
fs.read((char *)&num_layers, sizeof(int));
Eigen::VectorXi topology(num_layers);
// topology
fs.read((char *)topology.data(), topology.rows() * sizeof(int));
init_layer(topology);
autoscale_reset();
// scaling parameters
fs.read((char *)Xscale.data(), Xscale.size() * sizeof(F_TYPE));
fs.read((char *)Xshift.data(), Xshift.size() * sizeof(F_TYPE));
fs.read((char *)Yscale.data(), Yscale.size() * sizeof(F_TYPE));
fs.read((char *)Yshift.data(), Yshift.size() * sizeof(F_TYPE));
// weights
for (int i = 1; i < layer.size(); ++i)
{
fs.read((char *)layer[i].W.data(), layer[i].W.rows() * layer[i].W.cols() * sizeof(F_TYPE));
fs.read((char *)layer[i].b.data(), layer[i].b.size() * sizeof(F_TYPE));
}
}
}
void NeuralNet::init_layer(Eigen::VectorXi &topology)
{
// init input layer
Layer l;
l.size = topology(0);
layer.push_back(l);
// init hidden and output layer
for (int i = 1; i < topology.size(); ++i)
{
Layer l;
l.size = topology(i);
l.W.setZero(l.size, layer[i - 1].size);
l.b.setZero(l.size);
l.dEdW.setZero(l.size, layer[i - 1].size);
l.dEdb.setZero(l.size);
// set initial Delta
l.DeltaW.resize(l.size, layer[i - 1].size);
l.Deltab.resize(l.size);
l.DeltaW.setConstant(p.Delta_0);
l.Deltab.setConstant(p.Delta_0);
layer.push_back(l);
}
}
void NeuralNet::init_weights(F_TYPE sd)
{
for (int i = 1; i < layer.size(); ++i)
{
layer[i].W.setRandom();
layer[i].b.setRandom();
layer[i].W *= sd;
layer[i].b *= sd;
}
}
NeuralNet::~NeuralNet()
{
}
F_TYPE NeuralNet::loss(const matrix_t &X, const matrix_t &Y, F_TYPE lambda)
{
assert(layer.front().size == X.cols());
assert(layer.back().size == Y.cols());
assert(X.rows() == Y.rows());
// number of samples
size_t m = X.rows();
// forward pass
forward_pass(X);
// compute error
matrix_t error = layer.back().a - ((Y.rowwise() - Yshift.transpose()) * Yscale.asDiagonal());
// compute cost
F_TYPE J = 0.5 * error.rowwise().squaredNorm().mean();
// compute delta
layer.back().delta = (error.array() * sigmoid_gradient(layer.back().a).array()).matrix();
for (size_t i = layer.size() - 2; i > 0; --i)
{
matrix_t g = sigmoid_gradient(layer[i].a);
layer[i].delta = (layer[i + 1].delta * layer[i + 1].W).cwiseProduct(g);
}
// compute partial derivatives and RPROP parameters
for (int i = 1; i < layer.size(); ++i)
{
// add regularization to weights, bias weights are not regularized
J += 0.5 * lambda * layer[i].W.array().square().sum() / m;
matrix_t dEdW = (layer[i].delta.transpose() * layer[i - 1].a + lambda * layer[i].W) / m;
vector_t dEdb = layer[i].delta.colwise().sum().transpose() / m;
layer[i].directionW = layer[i].dEdW.cwiseProduct(dEdW);
layer[i].directionb = layer[i].dEdb.cwiseProduct(dEdb);
layer[i].dEdW = dEdW;
layer[i].dEdb = dEdb;
}
return J;
}
double NeuralNet::measure_accuracy(matrix_t Y, matrix_t Y_test)
{
int correct = 0;
for (int i = 0; i < Y.rows(); i++)
{
int j = 0;
for (; j < Y.cols(); j++)
{
int out = Y_test(i, j) > 0.7 ? 1 : 0;
//printf("%3i %4.4f", (int)Y(i, j), Y_test(i, j));
if (out != Y(i, j))
break;
}
//cout << endl;
if (j == Y.cols())
correct++;
}
//cout << "Correct answer " << correct << " among " << Y.rows() << " test" << endl;
double accuracy=(double)correct / (double)Y.rows() * 100;
return accuracy;
//cout << "Accuracy: " << accuracy << "%" << endl;
}
void NeuralNet::rprop()
{
for (int i = 1; i < layer.size(); ++i)
{
//std::cout << "#######Layer " << i << "###########" << std::endl;
for (int j = 0; j < layer[i].size; ++j)
{
for (int k = 0; k < layer[i - 1].size; ++k)
{
F_TYPE u = rprop_update(layer[i].directionW(j, k), layer[i].DeltaW(j, k), layer[i].dEdW(j, k));
layer[i].W(j, k) += u;
}
layer[i].b(j) += rprop_update(layer[i].directionb(j), layer[i].Deltab(j), layer[i].dEdb(j));
}
}
}
F_TYPE NeuralNet::rprop_update(F_TYPE &direction, F_TYPE &Delta, F_TYPE grad)
{
if (direction > 0)
{
Delta = std::min(Delta * p.eta_plus, p.Delta_max);
direction = grad;
if (grad > 0)
return -Delta;
else
return Delta;
}
else if (direction < 0)
{
Delta = std::max(Delta * p.eta_minus, p.Delta_min);
direction = 0;
return 0;
}
else
{
direction = grad;
if (grad > 0)
return -Delta;
else
return Delta;
}
}
void NeuralNet::rprop_reset()
{
for (int i = 1; i < layer.size(); ++i)
{
layer[i].dEdW.setZero();
layer[i].dEdb.setZero();
layer[i].DeltaW.setConstant(p.Delta_0);
layer[i].Deltab.setConstant(p.Delta_0);
}
}
void NeuralNet::forward_pass(const matrix_t &X)
{
assert(layer.front().size == X.cols());
// copy and scale data matrix
layer[0].a = (X.rowwise() - Xshift.transpose()) * Xscale.asDiagonal();
for (int i = 1; i < layer.size(); ++i)
{
// compute input for current layer
layer[i].z = layer[i - 1].a * layer[i].W.transpose();
// add bias
layer[i].z.rowwise() += layer[i].b.transpose();
// apply activation function
layer[i].a = sigmoid(layer[i].z);
}
}
matrix_t NeuralNet::get_activation()
{
return (layer.back().a * Yscale.asDiagonal().inverse()).rowwise() + Yshift.transpose();
}
matrix_t NeuralNet::sigmoid(const matrix_t &x)
{
return ((-x).array().exp() + 1.0).inverse().matrix();
}
matrix_t NeuralNet::sigmoid_gradient(const matrix_t &x)
{
return x.cwiseProduct((1.0 - x.array()).matrix());
}
void NeuralNet::gradient_descent(F_TYPE alpha)
{
for (int i = 1; i < layer.size(); ++i)
{
layer[i].W -= alpha * layer[i].dEdW;
layer[i].b -= alpha * layer[i].dEdb;
}
}
bool NeuralNet::write(const char *filename)
{
// open file
std::ofstream fs(filename, std::ios::out | std::ios::binary);
// write everything to disk
if (fs)
{
// number of layers
int num_layers = layer.size();
fs.write((char *)&num_layers, sizeof(int));
// topology
for (int i = 0; i < layer.size(); ++i)
{
int num_units = layer[i].size;
fs.write((char *)&num_units, sizeof(int));
}
// scaling parameters
fs.write((char *)Xscale.data(), Xscale.size() * sizeof(F_TYPE));
fs.write((char *)Xshift.data(), Xshift.size() * sizeof(F_TYPE));
fs.write((char *)Yscale.data(), Yscale.size() * sizeof(F_TYPE));
fs.write((char *)Yshift.data(), Yshift.size() * sizeof(F_TYPE));
// weights
for (int i = 1; i < layer.size(); ++i)
{
fs.write((char *)layer[i].W.data(), layer[i].W.rows() * layer[i].W.cols() * sizeof(F_TYPE));
fs.write((char *)layer[i].b.data(), layer[i].b.size() * sizeof(F_TYPE));
}
}
else
{
return false;
}
fs.close();
return true;
}
void NeuralNet::autoscale(const matrix_t &X, const matrix_t &Y)
{
assert(layer.front().size == X.cols());
assert(layer.back().size == Y.cols());
assert(X.rows() == Y.rows());
// compute the mean of the input data
Xshift = X.colwise().mean();
// compute the standard deviation of the input data
Xscale = (X.rowwise() - Xshift.transpose()).array().square().colwise().mean().array().sqrt().inverse();
for (size_t i = 0; i < Xscale.size(); ++i)
if (Xscale(i) > 10e9)
Xscale(i) = 1;
// compute the minimum target values
Yshift = Y.colwise().minCoeff();
// compute the maximum shifted target values
Yscale = (Y.colwise().maxCoeff() - Yshift.transpose()).array().inverse();
for (size_t i = 0; i < Yscale.size(); ++i)
if (Yscale(i) > 10e9)
Yscale(i) = 1;
}
void NeuralNet::autoscale_reset()
{
Xscale = vector_t::Ones(layer.front().size);
Xshift = vector_t::Zero(layer.front().size);
Yscale = vector_t::Ones(layer.back().size);
Yshift = vector_t::Zero(layer.back().size);
}