Skip to content

Latest commit

 

History

History
110 lines (92 loc) · 6.39 KB

CHANGELOG.rst

File metadata and controls

110 lines (92 loc) · 6.39 KB
  • Feature Type hints are now available for all functions and classes.
  • Enhancement Add support for more than one stochastic variable when building maximum profit metrics with :class:`~empulse.metrics.Metric`
  • Enhancement Allow :class:`~empulse.metrics.Metric` to be used as a context manager. This ensures the metric is always built after defining the cost-benefit elements.
  • Fix Fix datasets not properly being packaged together with the package
  • Fix Fix :class:`~empulse.models.RobustCSClassifier` when array-like parameters are passed to fit method.

0.7.0 (05-02-2025)

0.6.0 (28-01-2025)

  • Major Feature Add :class:`~empulse.metrics.Metric` to easily build your own value-driven and cost-sensitive metrics
  • Feature Add support for LightGBM and Catboost models in :class:`~empulse.models.CSBoostClassifier` and :class:`~empulse.models.B2BoostClassifier`
  • API Change :func:`~empulse.metrics.make_objective_churn` and :func:`~empulse.metrics.make_objective_acquisition` now take a model argument to calculate the objective for either XGBoost, LightGBM or Catboost models.
  • API Change XGBoost is now an optional dependency together with LightGBM and Catboost. To install the package with XGBoost, LightGBM and Catboost support, use the following command: pip install empulse[optional]
  • API Change Renamed y_pred_baseline and y_proba_baseline to baseline in :func:`~empulse.metrics.savings_score` and :func:`~empulse.metrics.expected_savings_score`. It now accepts the following arguments:
    • If 'zero_one', the baseline model is a naive model that predicts all zeros or all ones depending on which is better.
    • If 'prior', the baseline model is a model that predicts the prior probability of the majority or minority class depending on which is better (not available for savings score).
    • If array-like, target probabilities of the baseline model.
  • Feature Add parameter validation for all models and samplers
  • API Change Make all arguments of dataset loaders keyword-only
  • Fix Update the descriptions attached to each dataset to match information found in the user guide
  • Fix Improve type hints for functions and classes

0.5.2 (12-01-2025)

0.5.1 (05-01-2025)

  • Fix Fixed documentation build issue

0.5.0 (05-01-2025)