-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathasm_gen.py
829 lines (650 loc) · 28.7 KB
/
asm_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
"""Objects for the IL->ASM stage of the compiler."""
import itertools
import shivyc.asm_cmds as asm_cmds
import shivyc.spots as spots
from shivyc.spots import Spot, RegSpot, MemSpot, LiteralSpot
class ASMCode:
"""Stores the ASM code generated from the IL code.
lines (List) - Lines of ASM code recorded. The commands are stored as
tuples in this list, where the first value is the name of the command and
the next values are the command arguments.
"""
def __init__(self):
"""Initialize ASMCode."""
self.lines = []
self.comm = []
self.globals = []
self.data = []
self.string_literals = []
def add(self, cmd):
"""Add a command to the code.
cmd (ASMCommand) - Command to add
"""
self.lines.append(cmd)
label_num = 0
@staticmethod
def get_label():
"""Return a unique label string."""
ASMCode.label_num += 1
return f"__shivyc_label{ASMCode.label_num}"
def add_global(self, name):
"""Add a name to the code as global.
name (str) - The name to add.
"""
self.globals.append(f"\t.global {name}")
def add_data(self, name, size, init):
"""Add static data to the code.
init - the value to initialize `name` to
"""
self.data.append(f"{name}:")
size_strs = {1: "byte",
2: "word",
4: "int",
8: "quad"}
if init:
self.data.append(f"\t.{size_strs[size]} {init}")
else:
self.data.append(f"\t.zero {size}")
def add_comm(self, name, size, local):
"""Add a common symbol to the code."""
if local:
self.comm.append(f"\t.local {name}")
self.comm.append(f"\t.comm {name} {size}")
def add_string_literal(self, name, chars):
"""Add a string literal to the ASM code."""
self.string_literals.append(f"{name}:")
data = ",".join(str(char) for char in chars)
self.string_literals.append(f"\t.byte {data}")
def full_code(self): # noqa: D202
"""Produce the full assembly code.
return (str) - The assembly code, ready for saving to disk and
assembling.
"""
header = ["\t.intel_syntax noprefix"]
header += self.comm
if self.string_literals or self.data:
header += ["\t.section .data"]
header += self.data
header += self.string_literals
header += [""]
header += ["\t.section .text"] + self.globals
code = [str(line) for line in self.lines]
footer = ["\t.section\t.note.GNU-stack,\"\",@progbits"]
footer += ["\t.att_syntax noprefix", ""]
return "\n".join(header + code + footer)
class NodeGraph:
"""Graph storing conflict and preference information.
self._real_nodes - list of all real nodes in this graph
self._all_nodes - list of all nodes in this graph, including precolored
self.conf - dictionary mapping each node to nodes with which it
has a conflict edge
self._pref - dictionary mapping each node to nodes with which it
has a preference edge
The conflict and preference relations are symmetric. That is,
if `n1 in self.conf[n2]`, then `n2 in self._conf[n1]` and vice versa.
"""
def __init__(self, nodes=None):
"""Initialize NodeGraph."""
self._real_nodes = nodes or []
self._all_nodes = self._real_nodes[:]
self._conf = {n: [] for n in self._all_nodes}
self._pref = {n: [] for n in self._all_nodes}
def is_node(self, n):
"""Check whether given node is in the graph."""
return n in self._conf and n in self._pref
def add_dummy_node(self, v):
"""Add a dummy node to graph."""
self._all_nodes.append(v)
self._conf[v] = []
self._pref[v] = []
# Dummy nodes must mutually conflict
for n in self._all_nodes:
if n not in self._real_nodes and n != v:
self.add_conflict(n, v)
def add_conflict(self, n1, n2):
"""Add a conflict edge between n1 and n2."""
if n2 not in self._conf[n1]:
self._conf[n1].append(n2)
if n1 not in self._conf[n2]:
self._conf[n2].append(n1)
def add_pref(self, n1, n2):
"""Add a preference edge between n1 and n2."""
if n2 not in self._pref[n1]:
self._pref[n1].append(n2)
if n1 not in self._pref[n2]:
self._pref[n2].append(n1)
def pop(self, n):
"""Remove and return node n from this graph."""
del self._conf[n]
del self._pref[n]
if n in self._real_nodes:
self._real_nodes.remove(n)
self._all_nodes.remove(n)
for v in self._conf:
if n in self._conf[v]:
self._conf[v].remove(n)
for v in self._pref:
if n in self._pref[v]:
self._pref[v].remove(n)
return n
def merge(self, n1, n2):
"""Merge nodes n1 and n2.
This function merges n2 into n1. That is, it removes n2 from the
graph and n1 gets the preference neighbors and conflict neighbors
that n2 previously had.
"""
# Merge conflict lists
total_conf = self._conf[n1][:]
for c in self._conf[n2]:
if c not in total_conf:
total_conf.append(c)
self._conf[n1] = total_conf
# Restore symmetric invariant
for c in self._conf[n1]:
if n2 in self._conf[c]:
self._conf[c].remove(n2)
if n1 not in self._conf[c]:
self._conf[c].append(n1)
# Merge preference lists
total_pref = self._pref[n1][:]
for p in self._pref[n2]:
if p not in total_pref:
total_pref.append(p)
if n1 in total_pref: total_pref.remove(n1)
if n2 in total_pref: total_pref.remove(n2)
self._pref[n1] = total_pref
# Restore symmetric invariant
for c in self._pref[n1]:
if n2 in self._pref[c]:
self._pref[c].remove(n2)
if n1 not in self._pref[c]:
self._pref[c].append(n1)
del self._conf[n2]
del self._pref[n2]
self._real_nodes.remove(n2)
self._all_nodes.remove(n2)
def remove_pref(self, n1, n2):
"""Remove the preference edge between n1 and n2."""
self._pref[n1].remove(n2)
self._pref[n2].remove(n1)
def prefs(self, n):
"""Return the list of nodes to which n has a preference edge."""
return self._pref[n]
def confs(self, n):
"""Return the list of nodes with which n has a conflict edge."""
return self._conf[n]
def nodes(self):
"""Return the real nodes currently in this graph."""
return self._real_nodes
def all_nodes(self):
"""Return all nodes in this graph, including pseudonodes."""
return self._all_nodes
def copy(self):
"""Return a deep copy of this graph, but with same ILValue objects."""
g = NodeGraph()
g._real_nodes = self._real_nodes[:]
g._all_nodes = self._all_nodes[:]
for n in self._all_nodes:
g._conf[n] = self._conf[n][:]
g._pref[n] = self._pref[n][:]
return g
def __str__(self): # pragma: no cover
"""Return this graph as a string for debugging purposes."""
return ("Conf\n" +
"\n".join(str((v, self._conf[v])) for v in self._all_nodes)
+ "\nPref\n" +
"\n".join(str((v, self._pref[v])) for v in self._all_nodes))
class ASMGen:
"""Contains the main logic for generation of the ASM from the IL.
il_code (ILCode) - IL code to convert to ASM.
asm_code (ASMCode) - ASMCode object to populate with ASM.
arguments - Arguments passed via command line.
offset (int) - Current offset from RBP for allocating on stack
"""
# List of registers used for allocation, sorted preferred-first
alloc_registers = spots.registers
# List of registers used by the get_reg function.
all_registers = alloc_registers
def __init__(self, il_code, symbol_table, asm_code, arguments):
"""Initialize ASMGen."""
self.il_code = il_code
self.symbol_table = symbol_table
self.asm_code = asm_code
self.arguments = arguments
self.offset = 0
def make_asm(self):
"""Generate ASM code."""
global_spotmap = self._get_global_spotmap()
for func in self.il_code.commands:
self.asm_code.add(asm_cmds.Label(func))
self._make_asm(self.il_code.commands[func], global_spotmap)
def _make_asm(self, commands, global_spotmap):
"""Generate ASM code for given command list."""
# Get free values
free_values = self._get_free_values(commands, global_spotmap)
# If any variable may have its address referenced, assign it a
# permanent memory spot if it doesn't yet have one.
move_to_mem = []
for command in commands:
refs = command.references().values()
for line in refs:
for v in line:
if v not in refs:
move_to_mem.append(v)
# In addition, move all IL values of strange size to memory because
# they won't fit in a register.
for v in free_values:
if v.ctype.size not in {1, 2, 4, 8}:
move_to_mem.append(v)
# TODO: All non-free IL values are automatically assigned distinct
# memory spots. However, this is very inoptimal for structs.
# Consider the following C code, where S is already declared:
#
# struct S array[10];
# s = array[1];
#
# This code compiles to the following IL:
#
# READAT(array, 1) -> X
# SET(X) -> s
#
# However, X is an unnecessary copy of `s` in memory. Ideally,
# the register allocator will recognize that X is just a temporary
# and assign X to the same memory location as s to avoid additional
# copy operations and memory usage. This also requires that the
# relevant IL commands check whether the two arguments are in the
# same spot before trying to do a copy.
for v in move_to_mem:
if v in free_values:
self.offset += v.ctype.size
global_spotmap[v] = MemSpot(spots.RBP, -self.offset)
free_values.remove(v)
# Perform liveliness analysis
live_vars = self._get_live_vars(commands, free_values)
# Generate conflict and preference graph
g_bak = self._generate_graph(commands, free_values, live_vars)
spilled_nodes = []
while True:
g = g_bak.copy()
# Remove all nodes that have been spilled for this iteration
for n in spilled_nodes:
g.pop(n)
removed_nodes = []
merged_nodes = {}
# Repeat simplification, coalescing, and freeze until freeze
# does not work.
while True:
# Repeat simplification and coalescing until nothing
# happens.
while True:
simplified = self._simplify_all(removed_nodes, g)
merged = self._coalesce_all(merged_nodes, g)
if not simplified and not merged: break
if not self._freeze(g):
break
# If no nodes remain, we are done
if not g.nodes():
break
# If nodes do remain, spill one of them and retry
else:
# Spill node with highest number of conflicts. This node
# will never be a merged node because we merge nodes
# conservatively, so any recently merged node can be
# simplified immediately.
n = max(g.nodes(), key=lambda n: len(g.confs(n)))
spilled_nodes.append(n)
# Move any remaining nodes from graph into removed_nodes
# This accounts for pseudonodes which cannot be removed in the
# simplify phase.
while g.all_nodes():
removed_nodes.append(g.pop(g.all_nodes()[0]))
# Pop values off the stack to generate spot assignments.
spotmap = self._generate_spotmap(removed_nodes, merged_nodes, g_bak)
# Assign stack values to the spilled nodes
for v in spilled_nodes:
self.offset += v.ctype.size
spotmap[v] = MemSpot(spots.RBP, -self.offset)
# Merge global spotmap into this spotmap
for v in global_spotmap:
spotmap[v] = global_spotmap[v]
if self.arguments.show_reg_alloc_perf: # pragma: no cover
total_prefs = 0
matched_prefs = 0
for n1, n2 in itertools.combinations(g_bak.all_nodes(), 2):
if n2 in g_bak.prefs(n1):
total_prefs += 1
if spotmap[n1] == spotmap[n2]:
matched_prefs += 1
print("total prefs", total_prefs)
print("matched prefs", matched_prefs)
print("total ILValues", len(g_bak.nodes()))
print("register ILValues", len(g_bak.nodes()) - len(spilled_nodes))
# Generate assembly code
self._generate_asm(commands, live_vars, spotmap)
def _get_global_spotmap(self):
"""Generate global spotmap and add global values to ASM.
This function generates a spotmap for variables which are not
specific to a single function. This includes literals and variables
with static storage duration.
"""
global_spotmap = {}
EXTERNAL = self.symbol_table.EXTERNAL
DEFINED = self.symbol_table.DEFINED
num = 0
for value in (set(self.il_code.literals.keys()) |
set(self.il_code.string_literals.keys()) |
set(self.symbol_table.storage.keys())):
num += 1
spot = self._get_nondynamic_spot(value, num)
if spot: global_spotmap[value] = spot
externs = self.symbol_table.linkages[EXTERNAL].values()
for v in externs:
if self.symbol_table.def_state.get(v) == DEFINED:
self.asm_code.add_global(self.symbol_table.names[v])
return global_spotmap
def _get_nondynamic_spot(self, v, num):
"""Get a spot for non-dynamic values.
In particular, assigns a spot to all literals, string literals,
variables with no storage, and variables with static storage.
v - value to get a spot for, or None if the value goes in a dynamic
spot like a register
nnum - positive integer guaranteed never to be the same for two
distinct calls to this function
"""
EXTERNAL = self.symbol_table.EXTERNAL
INTERNAL = self.symbol_table.INTERNAL
TENTATIVE = self.symbol_table.TENTATIVE
if v in self.il_code.literals:
return LiteralSpot(self.il_code.literals[v])
elif v in self.il_code.string_literals:
name = f"__strlit{num}"
self.asm_code.add_string_literal(
name, self.il_code.string_literals[v])
return MemSpot(name)
# Values with no storage can be referenced directly by name
elif not self.symbol_table.storage.get(v, True):
return MemSpot(self.symbol_table.names[v])
elif self.symbol_table.storage.get(v) == self.symbol_table.STATIC:
name = self.symbol_table.names[v]
if self.symbol_table.linkage_type.get(v) != EXTERNAL:
name = f"{name}.{num}"
if self.symbol_table.def_state.get(v) == TENTATIVE:
local = (self.symbol_table.linkage_type[v] == INTERNAL)
self.asm_code.add_comm(name, v.ctype.size, local)
else:
init_val = self.il_code.static_inits.get(v, 0)
self.asm_code.add_data(name, v.ctype.size, init_val)
return MemSpot(name)
def _get_free_values(self, commands, global_spotmap):
"""Generate list of free values.
Returns a list of the free values, the variables which need
allocation on the stack.
"""
free_values = []
for command in commands:
for value in command.inputs() + command.outputs():
if (value and value not in free_values
and value not in global_spotmap):
free_values.append(value)
return free_values
def _get_live_vars(self, commands, free_values):
"""Given a set of free ILValues, find when those ILValues are live.
free_values - list of ILValues for which to perform liveliness analysis
returns - array mapping command indices to a tuple where first
element is a list of variables live coming into the command and the
second is a list of the variables live exiting the command
"""
# Preprocess all commands to get a mapping from labels to command
# number.
labels = {c.label_name(): i for i, c in enumerate(commands)
if c.label_name()}
# Last iteration of live variables
prev_live_vars = None
# This iteration of live variables
live_vars = [([], []) for i in range(len(commands))]
while live_vars != prev_live_vars:
prev_live_vars = live_vars[:]
# List of currently live variables
cur_live = []
# Iterate through commands in backwards order
for i, command in list(enumerate(commands))[::-1]:
# If current command is a jump, add the live inputs of all
# possible targets to the current live list.
for label in command.targets():
i2 = labels[label]
for v in prev_live_vars[i2][0]:
if v not in cur_live:
cur_live.append(v)
# Variables live on output from this command
out_live = cur_live[:]
# Add variables used in this command to current live variables
for v in command.inputs():
if v in free_values and v not in cur_live:
cur_live.append(v)
# Remove variables defined in this command to live variables
for v in command.outputs():
if v in free_values:
if v in cur_live:
cur_live.remove(v)
else:
# If variable is defined in command but was not
# live, make it live on output from this command.
# TODO: Deal with this more efficiently.
# If the output is not live, then we don't actually
# need to perform this computation.
out_live.append(v)
# Variables live on input from this command
in_live = cur_live[:]
live_vars[i] = (in_live, out_live)
return live_vars
def _generate_graph(self, commands, free_values, live_vars):
"""Generate the conflict/preference graph.
free_values - List of ILValues to include in the graph
live_vars - Live range information from _get_live_vars
"""
g = NodeGraph(free_values)
for i, command in enumerate(commands):
# Variables active during input
for n1, n2 in itertools.combinations(live_vars[i][0], 2):
g.add_conflict(n1, n2)
# Variables active during output
for n1, n2 in itertools.combinations(live_vars[i][1], 2):
g.add_conflict(n1, n2)
# Relative conflict set of this command
for n1 in command.rel_spot_conf():
for n2 in command.rel_spot_conf()[n1]:
if n1 in free_values and n2 in free_values:
g.add_conflict(n1, n2)
# Absolute conflict set of this command
for n in command.abs_spot_conf():
for s in command.abs_spot_conf()[n]:
if n in free_values:
if s not in g.all_nodes():
g.add_dummy_node(s)
g.add_conflict(n, s)
# Clobber set of this command
for s in command.clobber():
if s not in g.all_nodes():
g.add_dummy_node(s)
# Add a conflict with dummy node for every variable live
# during both entry and exit from this command.
for n in live_vars[i][0]:
if n in live_vars[i][1]:
g.add_conflict(n, s)
# Form preferences based on rel_spot_pref
for v1 in command.rel_spot_pref():
for v2 in command.rel_spot_pref()[v1]:
if g.is_node(v1) and g.is_node(v2):
g.add_pref(v1, v2)
# Form preferences based on abs_spot_pref
for v in command.abs_spot_pref():
for s in command.abs_spot_pref()[v]:
if v in free_values:
if s not in g.all_nodes():
g.add_dummy_node(s)
g.add_pref(v, s)
return g
def _simplify_all(self, removed_nodes, g):
"""Repeat the Simplify step until no more can be done.
Returns False iff no simplification is done.
removed_nodes - stack of removed nodes to which this function adds
the nodes it removes
"""
# Get nodes without preference edges
no_pref = [v for v in g.nodes() if not g.prefs(v)]
# Repeat simplification until no more nodes can be removed
did_something = False
while True:
rem = self._simplify_once(no_pref, g)
if rem:
removed_nodes.append(rem)
no_pref.remove(rem)
did_something = True
else:
break
return did_something
def _simplify_once(self, nodes, g):
"""Remove and return a node in nodes if it has low conflict degree."""
for v in nodes:
# If the node has low conflict degree remove it from the graph
if len(g.confs(v)) < len(self.alloc_registers):
return g.pop(v)
def _coalesce_all(self, merged_nodes, g):
"""Repeat the coalesce step until no more can be done.
Returns False iff no simplification is done.
merged_nodes - Mapping from node to list of nodes. Every node in the
list of nodes has been merged into the key node.
"""
did_something = False
while True:
merge = self._coalesce_once(g)
if merge:
if merge[0] not in merged_nodes:
merged_nodes[merge[0]] = []
merged_nodes[merge[0]].append(merge[1])
did_something = True
else:
break
return did_something
def _coalesce_once(self, g):
"""Perform one iteration of the coalesce step.
Returns the merged pair if a merge was successfully completed. The
first element is the preserved node, and the second element is the
removed node.
"""
for v1 in g.nodes():
for v2 in g.prefs(v1):
# If the two nodes conflict, automatically continue.
if v1 in g.confs(v2):
continue
total_confs = len(set(g.confs(v1)) | set(g.confs(v2)))
# If one is a spot, use a special heuristic.
# (described on section 6, page 311 of George & Appel)
if isinstance(v1, Spot):
v1, v2 = v2, v1
if isinstance(v2, Spot):
for T in g.confs(v1):
if v2 in g.confs(T):
continue
if len(g.confs(T)) < len(self.alloc_registers):
continue
break
else:
# We can merge v1 into v2.
g.merge(v2, v1)
return v2, v1
# Otherwise, apply regular merging rules.
elif total_confs < len(self.alloc_registers):
g.merge(v1, v2)
return v1, v2
def _freeze(self, g):
"""Remove one preference edge.
This function finds two nodes, preferably of low conflict degree,
that are connected by a preference edge. Then, this preference edge
is removed from the graph. Returns false iff nothing is done.
"""
# Sort a list of nodes by conflict degree
nodes = sorted(g.all_nodes(), key=lambda n: len(g.confs(n)))
index_pairs = list(itertools.combinations(list(enumerate(nodes)), 2))
# Sort pairs to prioritize nodes which appear earlier in `nodes`
index_pairs.sort(key=lambda p: p[0][0] + p[1][0])
# Extract just the node pairs
pairs = [(p[0][1], p[1][1]) for p in index_pairs]
# Now, the earlier pairs in `pairs` have lower conflict degree and
# are thus superior candidates for freezing.
for n1, n2 in pairs:
if n1 in g.prefs(n2):
g.remove_pref(n1, n2)
return True
return False
def _generate_spotmap(self, removed_nodes, merged_nodes, g):
"""Pop values off stack to generate spot assignments."""
# Get a set of nodes which interfere with n or anything merged into it
def get_conflicts(n):
conflicts = set(g.confs(n))
for n1 in merged_nodes.get(n, []):
conflicts |= get_conflicts(n1)
return conflicts
# Get a set of nodes which are merged into `n`
def get_merged(n):
merged = {n}
for n1 in merged_nodes.get(n, []):
merged |= get_merged(n1)
return merged
# Build up spotmap
spotmap = {}
i = 0
while removed_nodes:
i += 1
# Allocate register to node `n`
n1 = removed_nodes.pop()
regs = self.alloc_registers[::-1]
# If n1 is a Spot (i.e. dummy node), immediately assign it a
# register.
if n1 in regs:
reg = n1
else:
# Don't chose any conflicting spots
for n2 in get_conflicts(n1):
# If n2 is a physical spot
if n2 in regs:
regs.remove(n2)
if n2 in spotmap and spotmap[n2] in regs:
regs.remove(spotmap[n2])
# Based on algorithm, there should always be register remaining
reg = regs.pop()
# Assign this register to every node merged into n1
for n2 in get_merged(n1):
spotmap[n2] = reg
return spotmap
def _generate_asm(self, commands, live_vars, spotmap):
"""Generate assembly code."""
# This is kinda hacky...
max_offset = max(spot.rbp_offset() for spot in spotmap.values())
if max_offset % 16 != 0:
max_offset += 16 - max_offset % 16
# Back up rbp and move rsp
self.asm_code.add(asm_cmds.Push(spots.RBP, None, 8))
self.asm_code.add(asm_cmds.Mov(spots.RBP, spots.RSP, 8))
offset_spot = LiteralSpot(str(max_offset))
self.asm_code.add(asm_cmds.Sub(spots.RSP, offset_spot, 8))
# Generate code for each command
for i, command in enumerate(commands):
self.asm_code.add(asm_cmds.Comment(type(command).__name__.upper()))
def get_reg(pref=None, conf=None):
if not pref: pref = []
if not conf: conf = []
# Spot is bad if it is containing a variable that is live both
# entering and exiting this command.
bad_vars = set(live_vars[i][0]) & set(live_vars[i][1])
bad_spots = set(spotmap[var] for var in bad_vars)
# Spot is free if it is where an output is stored.
for v in command.outputs():
bad_spots.discard(spotmap[v])
# Spot is bad if it is listed as a conflicting spot.
bad_spots |= set(conf)
for s in (pref + self.all_registers):
if isinstance(s, RegSpot) and s not in bad_spots:
return s
raise NotImplementedError("spill required for get_reg")
command.make_asm(spotmap, spotmap, get_reg, self.asm_code)