-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrend.cpp
867 lines (765 loc) · 24.4 KB
/
rend.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* CS580 Homework 3 */
#include "stdafx.h"
#include "stdio.h"
#define _USE_MATH_DEFINES
#include "math.h"
#include "Gz.h"
#include "rend.h"
int GzPushMatrix(GzRender *render, GzMatrix matrix, bool normIdentity);
short ctoi(float color);
void cal_coef(float v1[3], float v2[3], float coaf[3]);
void normalize(float v[3]);
void interpolate(float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3, float* res);
int GzRotXMat(float degree, GzMatrix mat)
{
// Create rotate matrix : rotate along x axis
// Pass back the matrix using mat value
GzMatrix matrix =
{
1, 0, 0, 0,
0, cos(degree*M_PI / 180.0), -sin(degree*M_PI / 180.0), 0,
0, sin(degree*M_PI / 180.0), cos(degree*M_PI / 180.0), 0,
0, 0, 0, 1
};
memcpy(mat, matrix, sizeof(GzMatrix));
return GZ_SUCCESS;
}
int GzRotYMat(float degree, GzMatrix mat)
{
// Create rotate matrix : rotate along y axis
// Pass back the matrix using mat value
GzMatrix matrix =
{
cos(degree*M_PI / 180.0), 0, sin(degree*M_PI / 180.0), 0,
0, 1, 0, 0,
-sin(degree*M_PI / 180.0), 0, cos(degree*M_PI / 180.0), 0,
0, 0, 0, 1
};
memcpy(mat, matrix, sizeof(GzMatrix));
return GZ_SUCCESS;
}
int GzRotZMat(float degree, GzMatrix mat)
{
// Create rotate matrix : rotate along z axis
// Pass back the matrix using mat value
GzMatrix matrix =
{
cos(degree*M_PI / 180.0), -sin(degree*M_PI / 180.0), 0, 0,
sin(degree*M_PI / 180.0), cos(degree*M_PI / 180.0), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
memcpy(mat, matrix, sizeof(GzMatrix));
return GZ_SUCCESS;
}
int GzTrxMat(GzCoord translate, GzMatrix mat)
{
// Create translation matrix
// Pass back the matrix using mat value
GzMatrix matrix =
{
1, 0, 0, translate[X],
0, 1, 0, translate[Y],
0, 0, 1, translate[Z],
0, 0, 0, 1
};
memcpy(mat, matrix, sizeof(GzMatrix));
return GZ_SUCCESS;
}
int GzScaleMat(GzCoord scale, GzMatrix mat)
{
// Create scaling matrix
// Pass back the matrix using mat value
GzMatrix matrix =
{
scale[X], 0, 0, 0,
0, scale[Y], 0, 0,
0, 0, scale[Z], 0,
0, 0, 0, 1
};
memcpy(mat, matrix, sizeof(GzMatrix));
return GZ_SUCCESS;
}
//----------------------------------------------------------
// Begin main functions
int GzNewRender(GzRender **render, GzDisplay *display)
{
/*
- malloc a renderer struct
- setup Xsp and anything only done once
- save the pointer to display
- init default camera
*/
//new render and check null
GzRender *p = NULL;
p = new GzRender;
if (p == NULL) {
return GZ_FAILURE;
}
//set everything
p->display = display;
p->matlevel = -1;
p->numlights = 0;
GzMatrix xsp =
{
display->xres / 2.0, 0.0, 0.0, display->xres / 2.0,
0.0, -display->yres / 2.0, 0.0, display->yres / 2.0,
0.0, 0.0, float(MAXINT), 0.0,
0.0, 0.0, 0.0, 1.0
};
memcpy(p->Xsp, xsp, sizeof(GzMatrix));
//default camera
p->camera.position[X] = DEFAULT_IM_X;
p->camera.position[Y] = DEFAULT_IM_Y;
p->camera.position[Z] = DEFAULT_IM_Z;
p->camera.lookat[X] = 0.0;
p->camera.lookat[Y] = 0.0;
p->camera.lookat[Z] = 0.0;
p->camera.worldup[X] = 0.0;
p->camera.worldup[Y] = 1.0;
p->camera.worldup[Z] = 0.0;
p->camera.FOV = DEFAULT_FOV;
p->Xoffset = 0;
p->Yoffset = 0;
*render = p;
return GZ_SUCCESS;
}
int GzFreeRender(GzRender *render)
{
/*
-free all renderer resources
*/
if (render != NULL) {
delete render;
}
return GZ_SUCCESS;
}
int GzBeginRender(GzRender *render)
{
/*
- setup for start of each frame - init frame buffer color,alpha,z
- compute Xiw and projection xform Xpi from camera definition
- init Ximage - put Xsp at base of stack, push on Xpi and Xiw
- now stack contains Xsw and app can push model Xforms when needed
*/
//check input
if (render == NULL || render->display == NULL)
return GZ_FAILURE;
//call initdisplay and check return value
if (GzInitDisplay(render->display) == GZ_FAILURE)
return GZ_FAILURE;
//compute Xiw
float x[3], y[3], z[3];
float sum, norm;
//compute z axis
for (int i = 0; i < 3; i++) {
z[i] = render->camera.lookat[i] - render->camera.position[i];
}
sum = 0;
for (float f : z) {
sum += f*f;
}
norm = sqrt(sum);
for (int i = 0; i < 3; i++) {
z[i] /= norm;
}
//compute y axis
for (int i = 0; i < 3; i++) {
y[i] = render->camera.worldup[i] - (render->camera.worldup[X]*z[X]+render->camera.worldup[Y]*z[Y]+render->camera.worldup[Z]*z[Z])*z[i];
}
sum = 0;
for (float f : y) {
sum += f*f;
}
norm = sqrt(sum);
for (int i = 0; i < 3; i++) {
y[i] /= norm;
}
//compute x axis
x[0] = y[1] * z[2] - y[2] * z[1];
x[1] = y[2] * z[0] - y[0] * z[2];
x[2] = y[0] * z[1] - y[1] * z[0];
sum = 0;
for (float f : x) {
sum += f*f;
}
norm = sqrt(sum);
for (int i = 0; i < 3; i++) {
x[i] /= norm;
}
//set Xiw
GzMatrix xiw =
{
x[X], x[Y], x[Z], -(x[X] * render->camera.position[X] + x[Y] * render->camera.position[Y] + x[Z] * render->camera.position[Z]),
y[X], y[Y], y[Z], -(y[X] * render->camera.position[X] + y[Y] * render->camera.position[Y] + y[Z] * render->camera.position[Z]),
z[X], z[Y], z[Z], -(z[X] * render->camera.position[X] + z[Y] * render->camera.position[Y] + z[Z] * render->camera.position[Z]),
0.0, 0.0, 0.0, 1.0
};
memcpy(render->camera.Xiw, xiw, sizeof(GzMatrix));
//compute Xpi
float d_1 = tan(render->camera.FOV*M_PI /180.0 / 2.0);
GzMatrix xpi =
{
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, d_1, 0.0,
0.0, 0.0, d_1, 1.0
};
memcpy(render->camera.Xpi, xpi, sizeof(GzMatrix));
//push Xsw
int status = GZ_SUCCESS;
status |= GzPushMatrix(render, render->Xsp, true);
status |= GzPushMatrix(render, render->camera.Xpi, true);
status |= GzPushMatrix(render, render->camera.Xiw);
if (status == GZ_FAILURE)
return GZ_FAILURE;
return GZ_SUCCESS;
}
int GzPutCamera(GzRender *render, GzCamera *camera)
{
/*
- overwrite renderer camera structure with new camera definition
*/
//check null and copy camera
if (render == NULL || camera == NULL)
return GZ_FAILURE;
memcpy(&(render->camera), camera, sizeof(GzCamera));
return GZ_SUCCESS;
}
int GzPushMatrix(GzRender *render, GzMatrix matrix)
{
/*
- push a matrix onto the Ximage stack
- check for stack overflow
*/
//remove translation in norm matrix
GzMatrix matrixNorm;
memcpy(matrixNorm, matrix, sizeof(GzMatrix));
for (int r = 0; r < 3; r++) {
matrixNorm[r][3] = 0.0;
}
//if it's the first matrix
if (render->matlevel == -1) {
memcpy(render->Ximage[render->matlevel + 1], matrix, sizeof(GzMatrix));
memcpy(render->Xnorm[render->matlevel + 1], matrixNorm, sizeof(GzMatrix));
}
else {
//check overflow
if (render->matlevel + 1 >= MATLEVELS)
return GZ_FAILURE;
//compute multiplication in Ximage
GzMatrix temp =
{
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0
};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
temp[i][j] += render->Ximage[render->matlevel][i][k] * matrix[k][j];
}
}
}
memcpy(render->Ximage[render->matlevel + 1], temp, sizeof(GzMatrix));
//compute multiplication in Xnorm
GzMatrix temp2 =
{
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0
};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
temp2[i][j] += render->Xnorm[render->matlevel][i][k] * matrixNorm[k][j];
}
}
}
memcpy(render->Xnorm[render->matlevel + 1], temp2, sizeof(GzMatrix));
}
//increment top pointer
render->matlevel++;
return GZ_SUCCESS;
}
int GzPushMatrix(GzRender *render, GzMatrix matrix, bool normIdentity)
{
/*
- push a matrix onto the Ximage stack
- check for stack overflow
*/
GzMatrix matrixNorm =
{
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
};
if (!normIdentity) {
memcpy(matrixNorm, matrix, sizeof(GzMatrix));
}
//if it's the first matrix
if (render->matlevel == -1) {
memcpy(render->Ximage[render->matlevel + 1], matrix, sizeof(GzMatrix));
memcpy(render->Xnorm[render->matlevel + 1], matrixNorm, sizeof(GzMatrix));
}
else {
//check overflow
if (render->matlevel + 1 >= MATLEVELS)
return GZ_FAILURE;
//compute multiplication in Ximage
GzMatrix temp =
{
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0
};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
temp[i][j] += render->Ximage[render->matlevel][i][k] * matrix[k][j];
}
}
}
memcpy(render->Ximage[render->matlevel + 1], temp, sizeof(GzMatrix));
//compute multiplication in Xnorm
GzMatrix temp2 =
{
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0
};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
temp2[i][j] += render->Xnorm[render->matlevel][i][k] * matrixNorm[k][j];
}
}
}
memcpy(render->Xnorm[render->matlevel + 1], temp2, sizeof(GzMatrix));
}
//increment top pointer
render->matlevel++;
return GZ_SUCCESS;
}
int GzPopMatrix(GzRender *render)
{
/*
- pop a matrix off the Ximage stack
- check for stack underflow
*/
//check underflow
if (render->matlevel < 0)
return GZ_FAILURE;
//decrement top
render->matlevel--;
return GZ_SUCCESS;
}
int GzPutAttribute(GzRender *render, int numAttributes, GzToken *nameList,
GzPointer *valueList) /* void** valuelist */
{
/*
- set renderer attribute states (e.g.: GZ_RGB_COLOR default color)
- later set shaders, interpolaters, texture maps, and lights
*/
//check input
if (render == NULL || numAttributes < 0 || (numAttributes > 0 && (nameList == NULL || valueList == NULL)))
return GZ_FAILURE;
//set attributes
for (int i = 0; i < numAttributes; i++) {
if (nameList[i] == GZ_RGB_COLOR) {
memcpy(render->flatcolor, valueList[i], sizeof(GzColor));
}
else if (nameList[i] == GZ_DIRECTIONAL_LIGHT) {
if (render->numlights == MAX_LIGHTS) {
return GZ_FAILURE;
}
render->lights[render->numlights] = (*(GzLight *)valueList[i]);
render->numlights++;
}
else if (nameList[i] == GZ_AMBIENT_LIGHT) {
render->ambientlight = (*(GzLight *)valueList[i]);
}
else if (nameList[i] == GZ_DIFFUSE_COEFFICIENT) {
memcpy(render->Kd, valueList[i], sizeof(GzColor));
}
else if (nameList[i] == GZ_AMBIENT_COEFFICIENT) {
memcpy(render->Ka, valueList[i], sizeof(GzColor));
}
else if (nameList[i] == GZ_SPECULAR_COEFFICIENT) {
memcpy(render->Ks, valueList[i], sizeof(GzColor));
}
else if (nameList[i] == GZ_INTERPOLATE) {
render->interp_mode = *(int *)valueList[i];
}
else if (nameList[i] == GZ_DISTRIBUTION_COEFFICIENT) {
render->spec = *(float *)valueList[i];
}
else if (nameList[i] == GZ_TEXTURE_MAP) {
render->tex_fun = (GzTexture)valueList[i];
}
else if (nameList[i] == GZ_AASHIFTX) {
render->Xoffset = *(float *)valueList[i];
}
else if (nameList[i] == GZ_AASHIFTY) {
render->Yoffset = *(float *)valueList[i];
}
else if (nameList[i] == GZ_AAWEIGHT) {
render->weight = *(float *)valueList[i];
}
}
return GZ_SUCCESS;
}
int GzPutTriangle(GzRender *render, int numParts, GzToken *nameList, GzPointer *valueList)
/* numParts : how many names and values */
{
/*
- pass in a triangle description with tokens and values corresponding to
GZ_POSITION:3 vert positions in model space
- Xform positions of verts using matrix on top of stack
- Clip - just discard any triangle with any vert(s) behind view plane
- optional: test for triangles with all three verts off-screen (trivial frustum cull)
- invoke triangle rasterizer
*/
//check inputs
if (render == NULL || render->display == NULL || numParts < 0 || (numParts > 0 && (nameList == NULL || valueList == NULL)))
return GZ_FAILURE;
//put Triangle into display
GzCoord *w3vert;
GzCoord *w3norm;
GzTextureIndex *p3uv;
for (int i = 0; i < numParts; i++) {
if (nameList[i] == GZ_POSITION) {
w3vert = (GzCoord*)valueList[i];
}
else if (nameList[i] == GZ_NORMAL) {
w3norm = (GzCoord*)valueList[i];
}
else if (nameList[i] == GZ_TEXTURE_INDEX) {
p3uv = (GzTextureIndex*)valueList[i];
}
}
//convert coords and norms of 3 vertices from model to image
GzCoord vnorm[3];
for (int pi = 0; pi < 3; pi++) {
//compute norms of vertices in image
float wnorm[4];
memcpy(wnorm, w3norm[pi], sizeof(GzCoord));
wnorm[3] = 1.0;
float inorm[4] = { 0.0, 0.0, 0.0, 0.0 };
for (int r1 = 0; r1 < 4; r1++) {
for (int c1 = 0; c1 < 4; c1++) {
inorm[r1] += render->Xnorm[render->matlevel][r1][c1] * wnorm[c1];
}
}
vnorm[pi][X] = inorm[0] / inorm[3];
vnorm[pi][Y] = inorm[1] / inorm[3];
vnorm[pi][Z] = inorm[2] / inorm[3];
normalize(vnorm[pi]);
}
//if Gouraud, compute color on each vertices
GzColor verColor[3];
if (render->interp_mode == GZ_COLOR || render->interp_mode == GZ_FLAT) {
for (int pi = 0; pi < 3; pi++) {
GzCoord e = {0, 0, -1};
//compute specular light and diffuse light
GzColor specular = {0,0,0};
GzColor diffuse = { 0,0,0 };
for (int l = 0; l < render->numlights; l++) {
float ne = vnorm[pi][X] * e[X] + vnorm[pi][Y] * e[Y] + vnorm[pi][Z] * e[Z];
float nl = vnorm[pi][X] * render->lights[l].direction[X] + vnorm[pi][Y] * render->lights[l].direction[Y] + vnorm[pi][Z] * render->lights[l].direction[Z];
//if NE and NL has different sign, skip
if (ne * nl < 0) {
continue;
}
//if both are negative, flip norm
else if (ne < 0 && nl < 0) {
vnorm[pi][X] *= -1;
vnorm[pi][Y] *= -1;
vnorm[pi][Z] *= -1;
nl *= -1;
}
GzCoord r = { 2 * nl*vnorm[pi][X] - render->lights[l].direction[X], 2 * nl*vnorm[pi][Y] - render->lights[l].direction[Y] , 2 * nl*vnorm[pi][Z] - render->lights[l].direction[Z] };
normalize(r);
float re = r[X] * e[X] + r[Y] * e[Y] + r[Z] * e[Z];
if (re < 0) {
re = 0.0;
}
else if (re > 1) {
re = 1.0;
}
float res = pow(re, render->spec);
specular[RED] += render->lights[l].color[RED] * res;
specular[GREEN] += render->lights[l].color[GREEN] * res;
specular[BLUE] += render->lights[l].color[BLUE] * res;
diffuse[RED] += render->lights[l].color[RED] * nl;
diffuse[GREEN] += render->lights[l].color[GREEN] * nl;
diffuse[BLUE] += render->lights[l].color[BLUE] * nl;
}
//ambient light
GzColor ambient = { 0,0,0 };
ambient[RED] = render->ambientlight.color[RED];
ambient[GREEN] = render->ambientlight.color[GREEN];
ambient[BLUE] = render->ambientlight.color[BLUE];
//final, if we have texture function, only need to add them together
if (render->tex_fun != NULL) {
verColor[pi][RED] = specular[RED] + diffuse[RED] + ambient[RED];
verColor[pi][GREEN] = specular[GREEN] + diffuse[GREEN] + ambient[GREEN];
verColor[pi][BLUE] = specular[BLUE] + diffuse[BLUE] + ambient[BLUE];
}
else {
verColor[pi][RED] = render->Ks[RED] * specular[RED] + render->Kd[RED] * diffuse[RED] + render->Ka[RED] * ambient[RED];
verColor[pi][GREEN] = render->Ks[GREEN] * specular[GREEN] + render->Kd[GREEN] * diffuse[GREEN] + render->Ka[GREEN] * ambient[GREEN];
verColor[pi][BLUE] = render->Ks[BLUE] * specular[BLUE] + render->Kd[BLUE] * diffuse[BLUE] + render->Ka[BLUE] * ambient[BLUE];
}
}
}
//Xform
GzCoord vert[3];
for (int pi = 0; pi < 3; pi++) {
float wvert[4];
memcpy(wvert, w3vert[pi], sizeof(GzCoord));
wvert[3] = 1.0;
float svert[4] = { 0.0, 0.0, 0.0, 0.0 };
for (int r1 = 0; r1 < 4; r1++) {
for (int c1 = 0; c1 < 4; c1++) {
svert[r1] += render->Ximage[render->matlevel][r1][c1] * wvert[c1];
}
}
vert[pi][X] = svert[0] / svert[3] - render->Xoffset;
vert[pi][Y] = svert[1] / svert[3] - render->Yoffset;
vert[pi][Z] = svert[2] / svert[3];
}
//compute U,V on vertices in perspective
GzTextureIndex puv[3];
for (int pi = 0; pi < 3; pi++) {
float Vz = vert[pi][Z] / (INT_MAX - vert[pi][Z]);
puv[pi][U] = p3uv[pi][U] / (Vz + 1);
puv[pi][V] = p3uv[pi][V] / (Vz + 1);
}
//ignore negative z
if (vert[0][Z] < 0 || vert[1][Z] < 0 || vert[2][Z] < 0)
return GZ_SUCCESS;
//rasterizer(LEE)
float coef[3][3];
int seq[3] = { 0, 1, 2 };
int cw[3];
//sort verts from top to bottom and save the sorting in seq
for (int j = 1; j < 3; j++) {
for (int k = 0; k < 3 - j; k++) {
if (vert[seq[k]][Y] > vert[seq[k + 1]][Y]) {
int temp = seq[k];
seq[k] = seq[k + 1];
seq[k + 1] = temp;
}
}
}
//if the top two vertices have same y, then compare theier x and save the cw sorting in cw
if (vert[seq[0]][Y] == vert[seq[1]][Y]) {
if (vert[seq[0]][X] < vert[seq[1]][X]) {
cw[0] = seq[0];
cw[1] = seq[1];
cw[2] = seq[2];
}
else {
cw[0] = seq[1];
cw[1] = seq[0];
cw[2] = seq[2];
}
}
//else, calculate the formula of line on vert0 and vert2, then calculate the x of the point on the line with the same y of vert1, and save the cw sorting
else {
float coef02[3];
cal_coef(vert[seq[0]], vert[seq[2]], coef02);
float x1 = vert[seq[1]][X];
float y1 = vert[seq[1]][Y];
float tx = (-coef02[1] * y1 - coef02[2]) / coef02[0];
if (x1 > tx) {
cw[0] = seq[0];
cw[1] = seq[1];
cw[2] = seq[2];
}
else {
cw[0] = seq[0];
cw[1] = seq[2];
cw[2] = seq[1];
}
}
//calculate formulas of three lines
float coef01[3], coef12[3], coef20[3];
cal_coef(vert[cw[0]], vert[cw[1]], coef01);
cal_coef(vert[cw[1]], vert[cw[2]], coef12);
cal_coef(vert[cw[2]], vert[cw[0]], coef20);
//calculate the formula of the plane
float ABCD[4];
interpolate(vert[0][X], vert[0][Y], vert[0][Z], vert[1][X], vert[1][Y], vert[1][Z], vert[2][X], vert[2][Y], vert[2][Z], ABCD);
float A = ABCD[0];
float B = ABCD[1];
float C = ABCD[2];
float D = ABCD[3];
//coefficient of uv
float uvcoef[2][4];
interpolate(vert[0][X], vert[0][Y], puv[0][U], vert[1][X], vert[1][Y], puv[1][U], vert[2][X], vert[2][Y], puv[2][U], uvcoef[U]);
interpolate(vert[0][X], vert[0][Y], puv[0][V], vert[1][X], vert[1][Y], puv[1][V], vert[2][X], vert[2][Y], puv[2][V], uvcoef[V]);
//if Gouraud, compute four coeffients
float colcoef[3][4];
if (render->interp_mode == GZ_COLOR) {
interpolate(vert[0][X], vert[0][Y], verColor[0][RED], vert[1][X], vert[1][Y], verColor[1][RED], vert[2][X], vert[2][Y], verColor[2][RED], colcoef[RED]);
interpolate(vert[0][X], vert[0][Y], verColor[0][GREEN], vert[1][X], vert[1][Y], verColor[1][GREEN], vert[2][X], vert[2][Y], verColor[2][GREEN], colcoef[GREEN]);
interpolate(vert[0][X], vert[0][Y], verColor[0][BLUE], vert[1][X], vert[1][Y], verColor[1][BLUE], vert[2][X], vert[2][Y], verColor[2][BLUE], colcoef[BLUE]);
}
//set all pixels in the bbox
for (int x = 0; x < render->display->xres; x++)
for (int y = 0; y < render->display->yres; y++) {
float f01 = coef01[0] * x + coef01[1] * y + coef01[2];
float f12 = coef12[0] * x + coef12[1] * y + coef12[2];
float f20 = coef20[0] * x + coef20[1] * y + coef20[2];
//if the pixel is in the triangle or on the top horizonal line or on the left line or on the bottom line when this line is at left
if ((f01 > 0 && f12 > 0 && f20 > 0) || (vert[cw[0]][Y] == vert[cw[1]][Y] && f01 == 0 && f12 > 0 && f20 > 0) || (f20 == 0 && f01 > 0 && f12 > 0) || (vert[cw[1]][Y] > vert[cw[2]][Y] && f12 == 0 && f01 > 0 && f20 > 0)) {
float z = (-A*x - B*y - D) / C;
int oz;
if (GzGetDisplay(render->display, x, y, NULL, NULL, NULL, NULL, &oz) == GZ_FAILURE)
return GZ_FAILURE;
if (z >= 0 && z <= oz) {
//uv interpolate
GzTextureIndex UV;
UV[U] = (-uvcoef[U][0] * x - uvcoef[U][1] * y - uvcoef[U][3]) / uvcoef[U][2];
UV[V] = (-uvcoef[V][0] * x - uvcoef[V][1] * y - uvcoef[V][3]) / uvcoef[V][2];
float Vz = z / (INT_MAX - z);
GzTextureIndex uv;
uv[U] = UV[U] * (Vz + 1);
uv[V] = UV[V] * (Vz + 1);
GzColor texcol;
if (render->tex_fun != NULL) {
render->tex_fun(uv[U], uv[V], texcol);
}
//if gouraud
GzColor color;
if (render->interp_mode == GZ_COLOR) {
for (int c = 0; c < 3; c++) {
color[c] = (-colcoef[c][0] * x - colcoef[c][1] * y - colcoef[c][3]) / colcoef[c][2];
if (render->tex_fun != NULL) {
color[c] *= texcol[c];
}
}
}
//if phong
else if (render->interp_mode == GZ_NORMALS) {
float norcoef[3][4];
interpolate(vert[0][X], vert[0][Y], vnorm[0][X], vert[1][X], vert[1][Y], vnorm[1][X], vert[2][X], vert[2][Y], vnorm[2][X], norcoef[X]);
interpolate(vert[0][X], vert[0][Y], vnorm[0][Y], vert[1][X], vert[1][Y], vnorm[1][Y], vert[2][X], vert[2][Y], vnorm[2][Y], norcoef[Y]);
interpolate(vert[0][X], vert[0][Y], vnorm[0][Z], vert[1][X], vert[1][Y], vnorm[1][Z], vert[2][X], vert[2][Y], vnorm[2][Z], norcoef[Z]);
GzCoord norm = { (-norcoef[X][0] * x - norcoef[X][1] * y - norcoef[X][3]) / norcoef[X][2], (-norcoef[Y][0] * x - norcoef[Y][1] * y - norcoef[Y][3]) / norcoef[Y][2], (-norcoef[Z][0] * x - norcoef[Z][1] * y - norcoef[Z][3]) / norcoef[Z][2] };
normalize(norm);
GzCoord e = { 0,0,-1 };
//compute specular light and diffuse light
GzColor specular = { 0,0,0 };
GzColor diffuse = { 0,0,0 };
for (int l = 0; l < render->numlights; l++) {
float ne = norm[X] * e[X] + norm[Y] * e[Y] + norm[Z] * e[Z];
float nl = norm[X] * render->lights[l].direction[X] + norm[Y] * render->lights[l].direction[Y] + norm[Z] * render->lights[l].direction[Z];
//if NE and NL has different sign, skip
if (ne * nl < 0) {
continue;
}
//if both are negative, flip norm
else if (ne < 0 && nl < 0) {
norm[X] *= -1;
norm[Y] *= -1;
norm[Z] *= -1;
nl *= -1;
}
GzCoord r = { 2 * nl*norm[X] - render->lights[l].direction[X], 2 * nl*norm[Y] - render->lights[l].direction[Y] , 2 * nl*norm[Z] - render->lights[l].direction[Z] };
normalize(r);
float re = r[X] * e[X] + r[Y] * e[Y] + r[Z] * e[Z];
if (re < 0) {
re = 0.0;
}
else if (re > 1) {
re = 1.0;
}
float res = pow(re, render->spec);
specular[RED] += render->lights[l].color[RED] * res;
specular[GREEN] += render->lights[l].color[GREEN] * res;
specular[BLUE] += render->lights[l].color[BLUE] * res;
diffuse[RED] += render->lights[l].color[RED] * nl;
diffuse[GREEN] += render->lights[l].color[GREEN] * nl;
diffuse[BLUE] += render->lights[l].color[BLUE] * nl;
}
//ambient light
GzColor ambient = { 0,0,0 };
ambient[RED] = render->ambientlight.color[RED];
ambient[GREEN] = render->ambientlight.color[GREEN];
ambient[BLUE] = render->ambientlight.color[BLUE];
//final
if (render->tex_fun != NULL) {
color[RED] = render->Ks[RED] * specular[RED] + texcol[RED] * diffuse[RED] + texcol[RED] * ambient[RED];
color[GREEN] = render->Ks[GREEN] * specular[GREEN] + texcol[GREEN] * diffuse[GREEN] + texcol[GREEN] * ambient[GREEN];
color[BLUE] = render->Ks[BLUE] * specular[BLUE] + texcol[BLUE] * diffuse[BLUE] + texcol[BLUE] * ambient[BLUE];
}
else {
color[RED] = render->Ks[RED] * specular[RED] + render->Kd[RED] * diffuse[RED] + render->Ka[RED] * ambient[RED];
color[GREEN] = render->Ks[GREEN] * specular[GREEN] + render->Kd[GREEN] * diffuse[GREEN] + render->Ka[GREEN] * ambient[GREEN];
color[BLUE] = render->Ks[BLUE] * specular[BLUE] + render->Kd[BLUE] * diffuse[BLUE] + render->Ka[BLUE] * ambient[BLUE];
}
}
else {
memcpy(color, verColor[0], sizeof(GzColor));
}
for (int c = 0; c < 3; c++) {
if (color[c] < 0) {
color[c] = 0;
}
else if (color[c] > 1) {
color[c] = 1;
}
}
if (GzPutDisplay(render->display, x, y, ctoi(color[RED]), ctoi(color[GREEN]), ctoi(color[BLUE]), 1, z) == GZ_FAILURE)
return GZ_FAILURE;
}
}
}
return GZ_SUCCESS;
}
//a function to calculate coaf of line formula
void cal_coef(float v1[3], float v2[3], float coaf[3]) {
float dx = v1[X] - v2[X];
float dy = v1[Y] - v2[Y];
coaf[0] = dy;
coaf[1] = -dx;
coaf[2] = dx*v1[Y] - dy*v1[X];
}
/* NOT part of API - just for general assistance */
short ctoi(float color) /* convert float color to GzIntensity short */
{
return(short)((int)(color * ((1 << 12) - 1)));
}
void normalize(float v[3]) {
float sum = 0;
for (int i = 0; i < 3; i++) {
sum += v[i]*v[i];
}
v[0] /= sqrt(sum);
v[1] /= sqrt(sum);
v[2] /= sqrt(sum);
}
void interpolate(float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3, float* res) {
float dx1 = x1 - x2;
float dy1 = y1 - y2;
float dz1 = z1 - z2;
float dx2 = x2 - x3;
float dy2 = y2 - y3;
float dz2 = z2 - z3;
float A = dy1*dz2 - dy2*dz1;
float B = dz1*dx2 - dz2*dx1;
float C = dx1*dy2 - dx2*dy1;
float D = -A*x3 - B*y3 - C*z3;
res[0] = A;
res[1] = B;
res[2] = C;
res[3] = D;
}