-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_gat.py
229 lines (186 loc) · 9.89 KB
/
main_gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import time
import argparse
import warnings
import pickle
import gzip
import copy
from collections import defaultdict
import numpy as np
import pytorch_lightning as pl
from gat.graph_data_loader import HeteroDataset
from gat.architecture import NewModel
from utils import seed_everything, create_file, save_output, sort_file, select_top_feats, is_directory_empty, load_dataset_indices
from configs import get_cfg_defaults
from raw_data_loader import MultiOmicsDataset
def arg_parse():
"""Parsing arguments"""
parser = argparse.ArgumentParser(description="HeteroGATomics for multiomics data integration")
parser.add_argument("--cfg", required=True, help="path to config file", type=str)
args = parser.parse_args()
return args
def prepare_data(main_folder, fold_idx, multiomics, cfg):
fold_dir = os.path.join(main_folder, f"{fold_idx + 1}")
train_index, test_index = load_dataset_indices(fold_dir)
multiomics_copy = copy.deepcopy(multiomics)
train_index.sort()
test_index.sort()
multiomics_copy.set_train_test(train_index, test_index)
multiomics_copy.config_components()
load_data_name = cfg.RESULT.SAVE_RICH_DATA_TMPL.format(dataset_name=cfg.DATASET.NAME, fold_idx=fold_idx + 1)
with gzip.open(os.path.join(cfg.RESULT.SAVE_RICH_DATA_DIR, load_data_name), 'rb') as file:
loaded_data = pickle.load(file)
loaded_node_pheromones, loaded_edge_pheromones = loaded_data
multiomics_copy.set_data_structure(loaded_node_pheromones, loaded_edge_pheromones)
return multiomics_copy
def main():
warnings.filterwarnings(action="ignore")
# ---- setup configs ----
args = arg_parse()
cfg = get_cfg_defaults()
cfg.merge_from_file(args.cfg)
cfg.freeze()
seed_everything(cfg.SOLVER.SEED, workers=True)
if is_directory_empty(cfg.RESULT.SAVE_RICH_DATA_DIR):
raise Exception("Perform feature selection first")
# ---- setup folders and paths ----
if not os.path.exists(cfg.RESULT.OUTPUT_DIR) and cfg.RESULT.SAVE_RESULT:
os.makedirs(cfg.RESULT.OUTPUT_DIR)
if not os.path.exists(cfg.RESULT.SAVE_MODEL_DIR) and cfg.RESULT.SAVE_MODEL:
os.makedirs(cfg.RESULT.SAVE_MODEL_DIR)
main_folder = os.path.join(cfg.DATASET.ROOT, cfg.DATASET.NAME)
raw_file_paths = [(os.path.join(main_folder, f"{omics}.csv"), omics) for omics in cfg.DATASET.OMICS]
raw_label_path = os.path.join(main_folder, f"ClinicalMatrix.csv")
if cfg.RESULT.SAVE_RESULT:
output_gat_file = os.path.join(cfg.RESULT.OUTPUT_DIR, f'HeteroGATomics_gat_{cfg.DATASET.NAME}.csv')
sorted_output_gat_file = os.path.join(cfg.RESULT.OUTPUT_DIR, f'HeteroGATomics_gat_{cfg.DATASET.NAME}_sorted.csv')
output_gat_file_time = os.path.join(cfg.RESULT.OUTPUT_DIR, f'HeteroGATomics_gat_{cfg.DATASET.NAME}_time.csv')
sorted_output_gat_file_time = os.path.join(cfg.RESULT.OUTPUT_DIR, f'HeteroGATomics_gat_{cfg.DATASET.NAME}_time_sorted.csv')
if cfg.SOLVER.TUNE_HYPER:
output_hyperparameter = os.path.join(cfg.RESULT.OUTPUT_DIR, f'HeteroGATomics_hyper_{cfg.DATASET.NAME}.csv')
create_file(file_dir=output_gat_file, header=cfg.RESULT.FILE_HEADER_GAT)
create_file(file_dir=output_gat_file_time, header=cfg.RESULT.FILE_HEADER_GAT_TIME)
# ---- setup multiomics dataset ----
multiomics = MultiOmicsDataset(
dataset_name=cfg.DATASET.NAME,
raw_file_paths=raw_file_paths,
raw_label_path=raw_label_path,
num_omics=len(cfg.DATASET.OMICS),
num_classes=cfg.DATASET.NUM_CLASSES,
init_pheromone_val=cfg.ACO.INIT_PHEROMONE,
sparsity_rates=cfg.DATASET.FEATURE_SPARSITY_RATES
)
print(multiomics)
final_gat_results = {}
gat_results = defaultdict(lambda: defaultdict(list))
time_results = defaultdict(list)
for fold_idx in range(cfg.DATASET.NUM_FOLDS):
print(f"==> Loading data from fold {fold_idx + 1}...")
fold_multiomics = prepare_data(main_folder, fold_idx, multiomics, cfg)
node_pheromones = fold_multiomics.get_node_pheromone()
node_relevances = fold_multiomics.get_node_relevance()
for feat_size in cfg.GAT.FINAL_FEAT_SIZES:
final_feat_subset = select_top_feats(node_pheromones, node_relevances, feat_size, fold_multiomics.num_omics,
cfg.ACO.SELECTION_RATE)
multiomics_deepcopy = copy.deepcopy(fold_multiomics)
multiomics_deepcopy.reduce_dimensionality(final_feat_subset, feat_size)
start_time = time.time()
hetero_data = HeteroDataset(multiomics_deepcopy, cfg.DATASET.PATIENT_SPARSITY_RATES,
tune_hyperparameters=cfg.SOLVER.TUNE_HYPER,
seed=cfg.SOLVER.SEED)
hetero_data.create_hetero_data()
# ---- setup model ----
print("\n ==> Building model...")
new_model = NewModel(dataset=hetero_data,
num_modalities=multiomics_deepcopy.num_omics,
num_classes=multiomics_deepcopy.num_classes,
gat_num_layers=cfg.GAT.NUM_LAYERS,
gat_num_heads=cfg.GAT.NUM_HEADS,
gat_hidden_dim=cfg.GAT.HIDDEN_DIM,
gat_dropout_rate=cfg.GAT.DROPOUT_RATE,
gat_lr_pretrain=cfg.GAT.LR_PRETRAIN,
gat_lr=cfg.GAT.LR,
gat_wd=cfg.GAT.WD,
vcdn_lr=cfg.VCDN.LR,
vcdn_wd=cfg.VCDN.WD,
tune_hyperparameters=cfg.SOLVER.TUNE_HYPER
)
# ---- setup pretraining model and trainer ----
print("\n ==> Pretrain model...")
model = new_model.get_model(pretrain=True)
trainer_pretrain = pl.Trainer(
max_epochs=cfg.SOLVER.MAX_EPOCHS_PRETRAIN,
default_root_dir=cfg.RESULT.LIGHTNING_LOG_DIR,
accelerator="auto",
devices="auto",
enable_model_summary=False,
log_every_n_steps=1
)
trainer_pretrain.fit(model)
# ---- setup training model and trainer ----
print("\n ==> Training model...")
model = new_model.get_model(pretrain=False)
trainer = pl.Trainer(
max_epochs=cfg.SOLVER.MAX_EPOCHS,
default_root_dir=cfg.RESULT.LIGHTNING_LOG_DIR,
accelerator="auto",
devices="auto",
enable_model_summary=False,
log_every_n_steps=1
)
trainer.fit(model)
if cfg.RESULT.SAVE_MODEL:
save_model_name = cfg.RESULT.SAVE_MODEL_TMPL.format(dataset_name=cfg.DATASET.NAME, fold_idx=fold_idx + 1,
feat_size=feat_size)
trainer.save_checkpoint(os.path.join(cfg.RESULT.SAVE_MODEL_DIR, save_model_name))
# ---- test model ----
print("\n ==> Testing model...")
trainer.test(model)
end_time = time.time()
running_time = end_time - start_time
time_results[feat_size].append(running_time)
if cfg.RESULT.SAVE_RESULT:
time_result = [feat_size, fold_idx + 1, running_time]
save_output(output_gat_file_time, time_result)
final_gat_results.setdefault(feat_size, []).append(model.get_log_metrics())
for metric_key, metric_value in model.get_log_metrics().items():
if metric_key.startswith("test_"):
gat_results[feat_size][metric_key.replace("test_", "")].append(metric_value[0])
if cfg.RESULT.SAVE_RESULT:
result = [feat_size, metric_key.replace("test_", ""), fold_idx + 1, metric_value[0]]
save_output(output_gat_file, result)
if cfg.RESULT.SAVE_RESULT:
sort_file(output_gat_file, sorted_output_gat_file, by=cfg.RESULT.FILE_HEADER_GAT[0:3])
sort_file(output_gat_file_time, sorted_output_gat_file_time, by=cfg.RESULT.FILE_HEADER_GAT_TIME[0:2])
print(f"\n==> Showing results...")
for feat_size, metrics in gat_results.items():
exe_time = round(np.mean(time_results[feat_size]))
print(f"Feature size {feat_size} (execution time: {exe_time} seconds)")
for metric_name, values in metrics.items():
average = np.mean(values)
std = np.std(values)
print(f" - {metric_name}: {average:.3f}±{std:.3f}")
if cfg.SOLVER.TUNE_HYPER:
print(f"\n==> Saving hyperparameter results...")
average_gat_results = {}
for feat_size, results in final_gat_results.items():
sum_metrics = defaultdict(lambda: np.zeros(cfg.SOLVER.MAX_EPOCHS + 1))
count_folds = len(results)
# Sum up the metrics for each fold
for result in results:
for metric, values in result.items():
if metric.startswith("val_"):
sum_metrics[metric.replace("val_", "")] += np.array(values)
# Calculate the average over all folds for each epoch
average_metrics = {metric: values / count_folds for metric, values in sum_metrics.items()}
average_gat_results[feat_size] = average_metrics
output_csv_rows = []
for feat_size, metrics in average_gat_results.items():
output_csv_rows.append([f"Feature size: {feat_size}"])
for metric, average in metrics.items():
row = [metric] + average.tolist()
output_csv_rows.append(row)
output_csv_rows.append([])
save_output(output_hyperparameter, output_csv_rows, multi_rows=True)
if __name__ == '__main__':
main()