-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraw_data_loader.py
365 lines (291 loc) · 13 KB
/
raw_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from typing import List, Tuple
import pandas as pd
import numpy as np
import scipy.sparse as sp
from utils import normalize, compute_relevance, RelevanceMetric, compute_correlation, CorrelationMetric
class SingleOmicsDataset:
r"""The single omics dataset
Args:
path (str): The directory of the dataset.
name (str): The name of the omics data.
label (pd.DataFrame): A dataframe of the labels of samples.
init_pheromone_val (float): Initial pheromone value.
prob_val (float): The relative importance of the omics.
sparsity_rate (float, optional): The sparsity rate in feature similarity network. (default: 0.8)
"""
def __init__(
self,
path: str,
name: str,
label: pd.DataFrame,
init_pheromone_val: float,
prob_val: float,
sparsity_rate: float = 0.8
) -> None:
self.path = path
self.name = name
self._label = label
self._init_pheromone_val = init_pheromone_val
self.default_prob_val = prob_val
self.prob_val = self.default_prob_val
self.sparsity_rate = sparsity_rate
self._data = pd.read_csv(path, sep=',', index_col=0)
self._train_data = None
self._train_label = None
self._test_data = None
self._test_label = None
self._data.index.names = ['sample']
self._data.columns.names = ['feature']
self._node_pheromone = None
self._edge_pheromone = None
self._relevance = None
self._corr = None
self._sparse_adj_mat = None
self._selected_subset = None
def build_full_data(self, common_indices, label):
self._data = self._data[self._data.index.isin(common_indices)]
self._data = self._data.sort_index(axis=0)
self._label = label
def clean_missing_values(self):
self._data = self._data.dropna(axis=1)
def normalize_data(self):
self._data = normalize(self._data)
def remove_low_variance_features(self, threshold):
self._data = self._data.loc[:, self._data.var() >= threshold]
def config_components(self):
# set initial intensity of pheromone values
self._node_pheromone = np.full(self.num_features, self._init_pheromone_val)
self._edge_pheromone = np.full((self.num_features, self.num_features), self._init_pheromone_val)
# compute relevance values
self._relevance = compute_relevance(self._train_data, self._train_label, RelevanceMetric.ANOVA)
self._relevance = normalize(self._relevance, 0.1, 1)
# compute correlation values
self._corr = compute_correlation(self._train_data, CorrelationMetric.PEARSON_CORRELATION)
similarity_threshold = self._find_similarity_threshold()
adj_mat = self._corr <= similarity_threshold
self._sparse_adj_mat = sp.csr_matrix(adj_mat)
# store upper triangle of correlation matrix
correlation_sparse = sp.triu(self._corr.values, k=1)
self._corr = sp.csr_matrix(correlation_sparse)
self.prob_val = self.default_prob_val
def _find_similarity_threshold(self):
sorted_correlation = self._corr.unstack().sort_values(ascending=False)
threshold_index = int(self._corr.size * self.sparsity_rate)
threshold_value = sorted_correlation.iloc[threshold_index]
return threshold_value
def reduce_dimensionality(self, omics_subset: List):
self._selected_subset = omics_subset
self._selected_subset.sort()
self._train_data = self._train_data.iloc[:, self._selected_subset]
self._test_data = self._test_data.iloc[:, self._selected_subset]
@property
def data(self):
return self._data
@property
def train_data(self):
return self._train_data
@property
def test_data(self):
return self._test_data
@property
def train_label(self):
return self._train_label
@property
def test_label(self):
return self._test_label
def set_train_test(self, train_index, test_index):
self._train_data = self._data.iloc[train_index]
self._test_data = self._data.iloc[test_index]
self._train_label = self._label.iloc[train_index]
self._test_label = self._label.iloc[test_index]
@property
def num_features(self) -> int:
if self._data is not None:
return len(self._data.columns)
else:
return len(self._train_data.columns)
@property
def num_samples(self) -> int:
if self._data is not None:
return len(self._data.index)
else:
return len(self._train_data.index) + len(self._test_data.index)
@property
def num_train_samples(self) -> int:
return len(self._train_data.index)
@property
def num_test_samples(self) -> int:
return len(self._test_data.index)
def get_node_pheromone(self, feat_idx=None):
return self._node_pheromone if feat_idx is None else self._node_pheromone[feat_idx]
def set_node_pheromone(self, feat_idx, pheromone_val):
self._node_pheromone[feat_idx] = pheromone_val
def get_edge_pheromone(self, feat_idx_1=None, feat_idx_2=None):
return self._edge_pheromone if feat_idx_1 is None or feat_idx_2 is None else self._edge_pheromone[feat_idx_1, feat_idx_2]
def set_edge_pheromone(self, feat_idx_1, feat_idx_2, pheromone_val):
self._edge_pheromone[feat_idx_1, feat_idx_2] = pheromone_val
def get_relevance(self, feat_idx=None):
return self._relevance.to_numpy() if feat_idx is None else self._relevance.iloc[feat_idx]
def get_correlation(self, feat_idx_1, feat_idx_2):
return max(self._corr[feat_idx_1, feat_idx_2], self._corr[feat_idx_2, feat_idx_1])
def is_connected(self, feat_idx_1, feat_idx_2):
return self._sparse_adj_mat[feat_idx_1, feat_idx_2]
def get_connected_feats(self, feat_idx):
row = self._sparse_adj_mat.getrow(feat_idx)
nonzero_indices = row.nonzero()[1]
return nonzero_indices
def get_data_structure(self):
return self._sparse_adj_mat, self._corr, self._edge_pheromone, self._relevance, self._node_pheromone, self._selected_subset
def set_data_structure(self, node_pheromone, edge_pheromone):
self._node_pheromone = node_pheromone
self._edge_pheromone = edge_pheromone
def check_index(self, df_label):
indices_equal = np.array_equal(self.data.index.values, df_label.index.values)
if not indices_equal:
raise Exception("The omics data indices are not equal to label indices.")
class MultiOmicsDataset:
r"""The multiomics dataset
Args:
dataset_name (str): The name of multiomics dataset.
raw_file_paths (List[Tuple]): The path of the omics data files.
raw_label_path (str): The path of the label data.
num_omics (int): The total number of omics in the dataset.
num_classes (int): The total number of classes in the dataset.
init_pheromone_val (float): Initial pheromone value for MAS.
sparsity_rates (List[float]): The sparsity rate for each omics in feature similarity network.
"""
def __init__(
self,
dataset_name: str,
raw_file_paths: List[Tuple],
raw_label_path: str,
num_omics: int,
num_classes: int,
init_pheromone_val: float,
sparsity_rates: List[float],
) -> None:
self._dataset_name = dataset_name
self._raw_file_paths = raw_file_paths
self._raw_label_path = raw_label_path
self._num_omics = num_omics
self._num_classes = num_classes
self._init_pheromone_val = init_pheromone_val
self.sparsity_rates = sparsity_rates
self.feat_size = None
self.data = []
self.label = None
self._process()
def _process(self):
prob_val = 1.0 / self.num_omics
# generate binary class label
self.label = pd.read_csv(self._raw_label_path, sep=',', index_col=0)
# create single omics datasets
for idx, (path, name) in enumerate(self._raw_file_paths):
omics_data = SingleOmicsDataset(path, name, self.label, self._init_pheromone_val, prob_val,
self.sparsity_rates[idx])
self.data.append(omics_data)
# create a full dataset
common_indices = self._find_common_samples()
self.label = self.label[self.label.index.isin(common_indices)]
self.label = self.label.sort_index(axis=0)
for omics_idx in range(self.num_omics):
self.data[omics_idx].build_full_data(common_indices, self.label)
# check whether omics data indices are equal to label indices
for omics_idx in range(self.num_omics):
self.data[omics_idx].check_index(self.label)
def _find_common_samples(self):
common_indices = self.label.index
for omics_idx in range(self.num_omics):
common_indices = common_indices.intersection(self.data[omics_idx].data.index)
return common_indices
def get(self, omics_idx) -> SingleOmicsDataset:
return self.data[omics_idx]
@property
def num_omics(self) -> int:
return self._num_omics
@property
def num_classes(self) -> int:
return self._num_classes
def set_train_test(self, train_index, test_index):
for omics_idx in range(self.num_omics):
self.data[omics_idx].set_train_test(train_index, test_index)
def set_data_structure(self, node_pheromones, edge_pheromones):
for omics_idx in range(self.num_omics):
self.data[omics_idx].set_data_structure(node_pheromones[omics_idx], edge_pheromones[omics_idx])
def config_components(self):
for omics_idx in range(self.num_omics):
self.data[omics_idx].config_components()
def get_node_pheromone(self, omics_idx=None):
if omics_idx is not None:
return self.data[omics_idx].get_node_pheromone()
return [single_omics.get_node_pheromone() for single_omics in self.data]
def get_node_relevance(self, omics_idx=None):
if omics_idx is not None:
return self.data[omics_idx].get_relevance()
return [single_omics.get_relevance() for single_omics in self.data]
def get_edge_pheromone(self, omics_idx=None):
if omics_idx is not None:
return self.data[omics_idx].get_edge_pheromone()
return [single_omics.get_edge_pheromone() for single_omics in self.data]
def reduce_dimensionality(self, subset, selected_feat_size=None):
self.feat_size = selected_feat_size
for omics_idx in range(self.num_omics):
self.data[omics_idx].reduce_dimensionality(subset.get(omics_idx, []))
def concatenate_data(self, subset=None, is_train=True):
concat_data = []
for omics_idx in range(self.num_omics):
if is_train:
final_data = self.data[omics_idx].train_data
else:
final_data = self.data[omics_idx].test_data
if subset:
omics_subset = subset.get(omics_idx, [])
final_data = final_data.iloc[:, omics_subset]
concat_data.append(final_data)
concat_data = pd.concat(concat_data, axis=1)
return concat_data
def __repr__(self) -> str:
multiomics_str = [
"\nDataset info:",
f"\n dataset name: {self._dataset_name}",
f"\n number of omics: {self.num_omics}",
f"\n number of classes: {self.num_classes}",
"\n\n omics | num samples | num features",
f"\n {'-' * 40}",
]
for omics in range(self.num_omics):
omics_data = self.get(omics)
multiomics_str.append(
f"\n {omics_data.name:<8} | "
f"{omics_data.num_samples:<11} | "
f"{omics_data.num_features:<12}"
)
else:
multiomics_str.append(f"\n {'-' * 40}\n\n")
flag = False
for omics in range(self.num_omics):
omics_data = self.get(omics)
if omics_data.train_data is not None:
flag = True
multiomics_str.append(
f"\n {omics_data.name:<8} | "
f"{omics_data.num_train_samples:<11} | "
f"{omics_data.train_data.shape[1]:<12}"
)
else:
if flag:
multiomics_str.append(f"\n {'-' * 40}\n\n")
flag = False
for omics in range(self.num_omics):
omics_data = self.get(omics)
if omics_data.test_data is not None:
flag = True
multiomics_str.append(
f"\n {omics_data.name:<8} | "
f"{omics_data.num_test_samples:<11} | "
f"{omics_data.test_data.shape[1]:<12}"
)
else:
if flag:
multiomics_str.append(f"\n {'-' * 40}\n\n")
return "".join(multiomics_str)