-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_partition.py
409 lines (338 loc) · 11.1 KB
/
graph_partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
Writer: Donguk Jung, Yongjun Shin
Date: 2017-11-27
"""
import random
import numpy as np
import numpy.linalg as lin
def csv_to_list(file_name):
f = open(file_name, 'r')
graph_list = []
f.readline()
for line in f.readlines():
list_line = line.strip().split(',')
cur_line = []
for i in range(len(list_line)):
cur_line.append(int(list_line[i]))
graph_list.append(cur_line)
f.close()
return graph_list
def print_cluster_result_list(cluster):
for i in range(len(cluster)):
print(cluster[i], end=' ')
print()
def print_graph(graph):
length = len(graph)
for i in range(length):
for j in range(length):
print(graph[i][j], end=' ')
print()
def clustering_random(graph):
num_of_module = len(graph[0])
cluster = []
for i in range(num_of_module):
cluster.append(random.randrange(num_of_module))
cluster = normalize(cluster)
return cluster
def swap(target_list, i, j):
temp = target_list[i]
target_list[i] = target_list[j]
target_list[j] = temp
def clustering_Spectral_Bisection(graph):
n = len(graph)
cluster = []
for i in range(n): cluster.append(0)
Lp = []
for i in range(n): Lp.append([x for x in range(n)])
for i in range(n):
for j in range(n):
if(i==j):
sum = 0
for k in range(n): sum += graph[i][k]
Lp[i][j] = sum
else:
if(graph[i][j]): Lp[i][j] = -1
else: Lp[i][j] = 0
exEin = np.array(Lp)
eigval = lin.eig(exEin)[0]
eigvec = lin.eig(exEin)[1]
clmvec = []
for i in range(n):
temp = []
for j in range(n): temp.append(eigvec[j][i])
clmvec.append(temp)
valvec = []
for i in range(n): valvec.append((eigval[i],clmvec[i]))
def getfirst(tuple):
return tuple[0]
svv = sorted(valvec, key = getfirst)
vec2 = svv[1][1]
for i in range(n):
if(vec2[i]<0): cluster[i] = 1
return cluster
def one_step_more(graph, cluster0):
n = len(graph)
cluster = normalize(cluster0)
# print(cluster)
cno = max(cluster) + 1 # number of clusters
cluster_valueview = [0 for i in range(cno)]
for i in range(n): cluster_valueview[cluster[i]] += 1
#print(cluster_valueview)
cvmax = max(cluster_valueview)
candidate = []
for i in range(cno):
if(cluster_valueview[i] == cvmax): candidate.append(i)
random.shuffle(candidate)
S = candidate[0] # select 1 random cluster among the max size one
#print('cno is')
#print(cno)
#print(S)
indexlist = []
for i in range(n):
if(cluster[i] == S): indexlist.append(i)
#print(indexlist)
subgraph = [[l[j] for j in indexlist] for l in [graph[i] for i in indexlist]] # make subgraph of that cluster
# run function for that subgraph
# get categorization
new_sub_cluster = normalize(clustering_Spectral_Bisection(subgraph)) # Expect categorization size cno and only consist of 0 and 1
#new_sub_cluster = normalize(clustering_Kernighan_Lin(subgraph)) ############################# SWITCH 1 #########################
new_cluster = cluster.copy()
for i in range(len(indexlist)):
if(new_sub_cluster[i] == 0): new_cluster[indexlist[i]] = cno
# print(new_cluster)
return normalize(new_cluster)
# marge categorization onto prev result
return
def clustering_Spectral_Bisection_nver(graph):
cluster = normalize(clustering_Spectral_Bisection(graph))
# cluster = normalize(clustering_Kernighan_Lin(graph)) ############################# SWITCH 2 ############################
mq = MQ(cluster, graph)
flag = 0
while True:
# print('loop ongoing...')
# print(cluster)
# print('mq ongoing')
# print(mq)
new_cluster = one_step_more(graph, cluster)
nmq = MQ(new_cluster, graph)
if(mq > nmq): break
if(mq == nmq):
if(flag > 3): break
flag += 1
cluster = new_cluster.copy()
mq = nmq
# print('final result')
# print(cluster)
# print('final mq')
# print(mq)
return cluster
def one_step_more2(graph, cluster0):
n = len(graph)
cluster = normalize(cluster0)
# print(cluster)
cno = max(cluster) + 1 # number of clusters
cluster_valueview = [0 for i in range(cno)]
for i in range(n): cluster_valueview[cluster[i]] += 1
#print(cluster_valueview)
cvmax = max(cluster_valueview)
candidate = []
for i in range(cno):
if(cluster_valueview[i] == cvmax): candidate.append(i)
random.shuffle(candidate)
S = candidate[0] # select 1 random cluster among the max size one
#print('cno is')
#print(cno)
#print(S)
indexlist = []
for i in range(n):
if(cluster[i] == S): indexlist.append(i)
#print(indexlist)
subgraph = [[l[j] for j in indexlist] for l in [graph[i] for i in indexlist]] # make subgraph of that cluster
# run function for that subgraph
# get categorization
#new_sub_cluster = normalize(clustering_Spectral_Bisection(subgraph)) # Expect categorization size cno and only consist of 0 and 1
new_sub_cluster = normalize(clustering_Kernighan_Lin(subgraph)) ############################# SWITCH 1 #########################
new_cluster = cluster.copy()
for i in range(len(indexlist)):
if(new_sub_cluster[i] == 0): new_cluster[indexlist[i]] = cno
# print(new_cluster)
return normalize(new_cluster)
# marge categorization onto prev result
return
def clustering_Kernighan_Lin_nver(graph):
# cluster = normalize(clustering_Spectral_Bisection(graph))
cluster = normalize(clustering_Kernighan_Lin(graph)) ############################# SWITCH 2 ############################
mq = MQ(cluster, graph)
flag = 0
while True:
# print('loop ongoing...')
# print(cluster)
# print('mq ongoing')
# print(mq)
new_cluster = one_step_more(graph, cluster)
nmq = MQ(new_cluster, graph)
if(mq > nmq): break
if(mq == nmq):
if(flag > 3): break
flag += 1
cluster = new_cluster.copy()
mq = nmq
# print('final result')
# print(cluster)
# print('final mq')
# print(mq)
return cluster
def clustering_Kernighan_Lin(graph):
num_of_module = len(graph[0])
cluster = []
'''TODO'''
for i in range(num_of_module):
if i < num_of_module//2:
cluster.append(0)
else:
cluster.append(1)
random.shuffle(cluster)
maximum_MQ = MQ(cluster, graph)
cur_cluster = cluster.copy()
while True:
partition1 = []
partition2 = []
cur_maximum_MQ = 0
for i in range(num_of_module):
if cluster[i] == 0:
partition1.append(i)
else:
partition2.append(i)
for i in range(len(partition1)):
for j in range(len(partition2)):
new_cluster = cluster.copy()
swap(new_cluster, partition1[i], partition2[j])
cur_MQ = MQ(new_cluster, graph)
if cur_MQ > cur_maximum_MQ:
cur_maximum_MQ = cur_MQ
cur_cluster = new_cluster.copy()
if maximum_MQ >= cur_maximum_MQ:
break
cluster = cur_cluster.copy()
maximum_MQ = cur_maximum_MQ
return cluster
def normalize(cluster):
n = len(cluster)
norm = []
minusval = []
for i in range(n): norm.append(0)
for i in range(n): norm[cluster[i]] = norm[cluster[i]] + 1
temp = 0
for i in range(n):
minusval.append(temp)
if(norm[i] == 0): temp = temp + 1
newcluster = []
for i in range(n):
newcluster.append(cluster[i] - minusval[cluster[i]])
return newcluster
def MQ(cluster0, graph):
cluster = normalize(cluster0)
n = len(cluster)
cnum = 0
for i in range(n):
if cluster[i] > cnum:
cnum = cluster[i]
cnum = cnum + 1
cresult = []
for i in range(cnum):
eachcluster = []
for j in range(n):
if cluster[j] == i:
eachcluster.append(j)
cresult.append(eachcluster)
mq = 0
for i in range(cnum):
mf = 0
coh = 0
cup = 0
elm = cresult[i]
m = len(elm)
for j in range(m):
for k in range(m):
if j != k:
coh = coh + graph[elm[j]][elm[k]]
for k in range(n):
cup = cup + graph[elm[j]][k]
cup = cup - coh
coh = coh / 2
if coh == 0:
mf = 0
else:
mf = coh / (coh + (cup/2))
mq = mq + mf
return mq
def clustering_bottom_up(graph):
num_of_module = len(graph[0])
cluster = [i for i in range(num_of_module)]
mq = MQ(cluster, graph)
while True:
next_MQ = 0
unique_cluster = list(set(cluster))
next_cluster = cluster.copy()
#choose two cluster and merge
for i in range(len(unique_cluster)):
for j in range(i+1, len(unique_cluster)):
temp = cluster.copy()
for c in range(len(temp)):
if temp[c] == unique_cluster[j]:
temp[c] = unique_cluster[i]
cur_MQ = MQ(temp, graph)
if next_MQ < cur_MQ:
next_MQ = cur_MQ
next_cluster = temp.copy()
if next_MQ > mq:
cluster = normalize(next_cluster.copy())
mq = next_MQ
else:
break
return cluster
def main():
file_name = "data/undirect3.csv"
graph = csv_to_list(file_name)
#print_graph(graph)
#print()
print("random...")
cluster_result1 = clustering_random(graph)
print("Kernighan Lin nver...")
cluster_result2 = clustering_Kernighan_Lin_nver(graph) #needs long time...
print("Spectral Bisection nver...")
cluster_result3 = clustering_Spectral_Bisection_nver(graph)
print("Kernighan Lin...")
cluster_result4 = clustering_Kernighan_Lin(graph)
print("Spectral Bisection...")
cluster_result5 = clustering_Spectral_Bisection(graph)
print("Bottom Up...")
cluster_result6 = clustering_bottom_up(graph)
print()
print("random")
print_cluster_result_list(cluster_result1)
print(MQ(cluster_result1, graph))
print()
print("Kerninghan Lin")
print_cluster_result_list(cluster_result4)
print(MQ(cluster_result4, graph))
print()
print("Kerninghan Lin nver")
print_cluster_result_list(cluster_result2)
print(MQ(cluster_result2, graph))
print()
print("Spectral Bisection")
print_cluster_result_list(cluster_result5)
print(MQ(cluster_result5, graph))
print()
print("Spectral Bisection nver")
print_cluster_result_list(cluster_result3)
print(MQ(cluster_result3, graph))
print()
print("Bottom Up")
print_cluster_result_list(cluster_result6)
print(MQ(cluster_result6, graph))
print()
return
if __name__ == "__main__":
main()