Skip to content

Latest commit

 

History

History
57 lines (36 loc) · 2.57 KB

File metadata and controls

57 lines (36 loc) · 2.57 KB

I've added the referenced materials below

Nonlinear PCA toolbox for Matlab

Nonlinear principal component analysis (NLPCA) based on auto-associative neural networks (autoencoder).

Syntax

#!python
[pc, net] = nlpca(data, k)

pc = nlpca_get_components(net, data)
data_reconstruction = nlpca_get_data(net, pc)

Description

pc = nlpca(data,k) extracts k nonlinear components from the data set. pc represents the estimated component values (scores).

net is a data structure explaining the neural network parameters for the nonlinear transformation from data space to component space and reverse.

net can be used in nlpca_get_components and nlpca_get_data to obtain component values (scores) for new data or reconstructed data for any component value.

Download

wget https://bitbucket.org/matthias-scholz/nonlinear-pca-toolbox-for-matlab/get/default.zip

Cite

If you use this toolbox in a publication, please cite one of these articles.