-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (48 loc) · 1.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import flask
from flask import Flask, render_template, request
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import tiktoken
import openai
import os
openai.api_key = open('.license').read().strip()
def search_courses(course_description, n=3, pprint=True, graduate=False):
"""
Search courses based on course description
Code adapted from OpenAI Cookbook
"""
df = pd.read_csv('courses_cs_all_with_embeddings.csv', converters={
"embedding": eval}, encoding='utf-8-sig')
if graduate:
df = df[df.course_number >= 500]
course_embedding = get_embedding(
course_description,
engine="text-embedding-ada-002"
)
df["similarity"] = df.embedding.apply(
lambda x: cosine_similarity(x, course_embedding))
results = (
df.sort_values("similarity", ascending=False)
.head(n)
)
return results
app = flask.Flask(__name__)
@app.route('/')
def index():
return flask.render_template('index.html')
@app.route('/search', methods=['POST'])
def search():
"""
Retrieve search query from user and return search results
"""
query = flask.request.form['query']
graduate = flask.request.form.get('graduate')
results = search_courses(query, n=10, pprint=True, graduate=graduate)
results['similarity'] = results['similarity'].apply(
lambda x: round(x, 2))
return flask.render_template('search.html', query=query, results=results)
@app.route('/about', methods=['GET'])
def about():
return flask.render_template('about.html')
if __name__ == '__main__':
app.run(debug=True)