-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGIRF_main.py
379 lines (287 loc) · 13.3 KB
/
GIRF_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 4 15:21:29 2024
@author: Stefan Bernegger
"""
from GIRF_models import get_patterns, get_freq_model, param_R_c_models, param_model_comparison, get_full_model
from GIRF_reduced import plot_IP, plot_t_IP
from GIRF_calibrate import claims_count_calibration, get_freq_model_new_default, get_claims_count_stats, \
run_calibration_comparison, model_comparison_LaTeX, run_full_calibration
# **********************************************************
# module nr 1
def patterns_and_red_var():
r"""
Claim representation and reduced variables
------------------------------------------
Parameters
----------
None.
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'get_patterns()'
Execution
---------
The routines 'plot_IP()' and 'plot_t_IP()' imported from 'GIRF_reduced.py' generates
a plot with the claim representation and a plot with derived temporal developments.
Output
------
- Plot with claim representation and reduced variables 'reduced_variables.pdf' (-> Figure 4.1)
- Plot with claim patterns and lags 'Patterns_lags.pdf' (-> Figure 4.2)
Returns
-------
None.
"""
time_grid, Inc_list, Paid, index_flat, label_list, color_list, lw_list, ls_list = get_patterns()
plot_t_IP(time_grid, Inc_list, Paid, index_flat, color_list, lw_list, ls_list, label_list, fn_ID='patt_lags')
t_eval = 75 # lag [month] for the evaluation of reduced variables
i_eval = 3 # index of incurred pattern to be evaluated
plot_IP(time_grid, Inc_list[i_eval], Paid, t_eval, color_list, fn_ID='red_var')
# **********************************************************
# module nr 2
def get_new_default_param(K_sim=100):
r"""
Generation of defaullt random variables
---------------------------------------
Parameters
----------
K_sim : Integer, optional
Count of simulations per run. The default is 100.
Execution
---------
The routine 'get_freq_model_new_default()' imported from 'GIRF_calibrate.py'
generates K=1 set of random variables for the generative process and K=K_sim
sets of random variables for the generative model.
Output
------
Statistics are written to the console and need to copy/pasted into the
'GIRF_models.py' module (lines 122 ff.)
Returns
-------
None.
"""
# Create default parameters: copy / paste from console to
# module GIRF_models.py
get_freq_model_new_default(K=K_sim)
# **********************************************************
# module nr 3
def calibrate_claims_count(K_sim=100, use_default = True):
r"""
Calibration of the claims-count process
---------------------------------------
Parameters
----------
K_sim : Integer, optional
Count of simulations per run. The default is 100.
use_default: Boolean, optional
if True : Use the default sample of simulated observations Y_t.
if False: Draw aset of observations Y_t from generative process.
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'get_freq_model()'
Execution
---------
The routine 'claims_count_calibration()' imported from 'GIRF_calibrate.py' generates
a table and plots with probability distributions for the generative process,
the prior model, and the models calibrated on an annual level and a period level.
Output
------
- LaTeX table with model parameters and statistics 'T_pdf_fit_param.txt' (-> Table 6.1 and C.1)
- LaTeX summary file with detaile statistics 'T_pdf_fit_stats.txt' (-> Section C.1.2)
- Pmf's and fitted pdf's for the generative model 'pdf_evolution.pdf' (-> Figure 6.1 a)
- Pmf's and pdf's for the prior generative process 'pdf_simulation.pdf' (-> Figure 6.1 b)
- Pmf's and pdf's for the period-level calibration 'pdf_fit_c.pdf' (-> Figure 6.1 c)
- annual-level calibration 'pdf_fit_ab.pdf' (-> Figure 6.1 d)
Returns
-------
None.
"""
# Four plots 'calibration of the annual observations' and print
# parameters (Figure 6.1 (a)-(d), Table 6.1 = C.1, and stats file for App. C.1.2)
# Calibration of the claims count shown in Figure 6.1
# - generative process defined by 'process_param'
# - Y_t: simulated 'observations'
# - generative model defined by 'model_param'
# - K: count of simulations
# - use_default = True : use default observations, i.e., Y_t = Y_t_default
# = False: draw observations Y_t from generative process parameters
# - priors defined by 'Phi'
process_param, model_param, Phi, Y_t = get_freq_model(use_default_obs=use_default)
T = process_param [0]
(Phi_a, Phi_b, Phi_c) = Phi
claims_count_calibration(T, process_param, model_param, Y_t, Phi_a, Phi_b, Phi_c, K_sim=K_sim,
fn_ID_plt=['pN_GP', 'pN_GM_0', 'pN_GM_c', 'pN_GM_ab'],
fn_ID_txt=['pN_par', 'pN_stats'])
# **********************************************************
# module nr 4
def claims_count_stats(N_run=100, K_sim=200, use_default=True):
r"""
Claims count calibration statistics
-----------------------------------
Parameters
----------
N_run : Integer, optional
Count of calibration runs. The default is 100.
K_sim : Integer, optional
Count of simulations per run. The default is 200.
use_default: Boolean, optional
if True : Use the default sample of simulated observations Y_t.
if False: Draw aset of observations Y_t from generative process.
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'get_freq_model()'
Execution
---------
Two sets of charts are generated with 'get_claims_count_stats()'
imported from 'GIRF_calibrate.py':
- 1st set: conditional, i.e., same Y_t is used in each calibration run.
- 2nd set: unconditional, i.e., a new set of observations Y_t is generated in
each calibration run.
Output
------
- Charts with conditional statistics 'cond_calibration_stats.pdf' (-> Figure 6.2)
- Charts with unconditional statistics 'calibration_stats.pdf' (-> Figure 6.3)
Returns
-------
None.
"""
# get model parameters
process_param, model_param, Phi, Y_t = get_freq_model(use_default_obs=use_default)
T = process_param [0]
(Phi_a, Phi_b, Phi_c) = Phi
# Conditional statistics: Y_t is given
Y_t_0 = Y_t
get_claims_count_stats(T, process_param, model_param, Y_t_0, Phi_a, Phi_b, Phi_c, K_sim=K_sim, N_run=N_run,
fn_ID_uncond='uncond_stats', fn_ID_cond='cond_stats')
# Unconditional statistics: Y_t is redrawn in each run
Y_t_0 = None
get_claims_count_stats(T, process_param, model_param, Y_t_0, Phi_a, Phi_b, Phi_c, K_sim=K_sim, N_run=N_run,
fn_ID_uncond='uncond_stats', fn_ID_cond='cond_stats')
# **********************************************************
# module nr 5
def calibration_comparison():
r"""
Evaluation of the MAP estimates for the Panjer class
----------------------------------------------------
Plot L(c) and R(c) for P, B, NB, and G and compare roots with logN solution
- Curves are shown for a selection of Panjer factors: NB, P, and B
Parameters
----------
None.
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'param_R_c_models()'
(same underlying model as in Figures 6.1, 6.2, and 6.3)
Execution
---------
The charts are generated with 'run_calibration_comparison()'
imported from 'GIRF_calibrate.py'
Output
------
- Charts with curves L(c) and R(c) 'fit_comparison.pdf' (-> Figure 6.4)
Returns
-------
None.
"""
param_lists, E, V, Y_t, Phi_c = param_R_c_models()
run_calibration_comparison(param_lists, E, V, Y_t, Phi_c, fn_ID='fit_comp')
# **********************************************************
# module nr 6
def model_comparison(N_run=5, K_sim=50, f_P_list=[1.5, 1.0, 0.6]):
r"""
Comparison of calibration parameters derived with different methods
-------------------------------------------------------------------
- Generative models: NB (f_P>1), P (f_P=1), and B (f_P<1)
- Parametric models fitted to simulated distributions:
- Discrete models : NB (only if f_P > 1), P, NB (only if f_P < 1)
- Continuous models: G and logN
- Calibration parameters evaluated on annual level and period level
Parameters
----------
N_run : Integer, optional
Count calibration runs per generative model. The default is 5.
K_sim : Integer, optional
Count of simulation runs for the generative models. The default is 50.
f_P_list : List with floats, optional
List with f_P values for [NB, P, B] cases. The default is [1.5, 1.0, 0.6].
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'param_model_comparison()'
Execution
---------
The iterative calibration procedure is performed with 'model_comparison_LaTeX()'
imported from 'GIRF_calibrate.py'
Output
------
- Parameters: Create LaTeX table 'T_comp_model_param.txt.' (-> Table 6.2 = C.2)
- Comparison: Create LaTeX table 'T_comp_calibr_param.txt' (-> Table 6.3 = C.3)
Returns
-------
None.
"""
model_param = param_model_comparison()
n = len(f_P_list)
for i_f_P in range(n):
first = i_f_P == 0
last = i_f_P == n-1
model_comparison_LaTeX(model_param, f_P_list, i_f_P, K_sim=K_sim, nr_runs=N_run, first=first, last=last,
fn_ID_mod='fit_comp_mod', fn_ID_par='fit_comp_par')
# **********************************************************
# module #7
def full_calibration(Nr_iter=5, K_sim=200):
r"""
Calibrate 7/9 model features and monitor the remaining 2/9
==========================================================
Parameters
----------
Nr_iter : Integer, optional
Count of iterations. The default is 5.
K_sim : Integer, optional
Count of simulations runs. The default is 200.
Input
-----
- Model parameters are imported from 'GIRF_models.py' via 'get_full_model()'
Execution
---------
The iterative calibration procedure is performed with 'run_full_calibration()'
imported from 'GIRF_calibrate.py'
Output
------
- Parameters : Create LaTeX table 'T_all_fit_param.txt (-> Table C.4)
- Initial model : Create figure 'evolution_all_it_0.pdf' (-> Figure 6.5)
- Calibrated model : Create figure 'evolution_all_it_5.pdf' (-> Figure 6.6)
Returns
-------
None.
"""
param_labels, obs_period, process_param, model_param, cal_True, Phi_cal = get_full_model()
(T, Date_Sub, Year_min, Year_max) = obs_period
run_full_calibration(Nr_iter, K_sim, param_labels, process_param, model_param, Date_Sub, Year_min, Year_max,
cal_True, Phi_cal, plt_dist=False, fn_ID_plt='all_it',
fn_ID_txt='all_it_par')
if __name__ == "__main__":
# Generic Integrated Rating Framework (GIRF):
# *******************************************
# - Input : the parameters for the various models are defined in:
# - GIRF_models.py
# - Output: the output file names (figures and tables) are defined in:
# - GIRF_models.py / GIRF_fn_dict
#
selection = [1, 2, 3, 4, 5, 6, 7]
# Plots 'claims representation and reduced variables'
# and 'patterns and lags' (Figures 4.1 and 4.2)
if 1 in selection: patterns_and_red_var()
# Create default parameters: copy / paste from console to
# module GIRF_models.py
if 2 in selection: get_new_default_param(K_sim=100)
# Four plots 'calibration of the annual observations' and print
# parameters (Figure 6.1 (a)-(d), Table 6.1 = C.1, and stats file for App. C.1)
if 3 in selection: calibrate_claims_count()
# Plots 'conditional' and 'unconditional calibration statistics
# (Figures 6.2 and 6.3)
if 4 in selection: claims_count_stats(N_run=100, K_sim=200, use_default=True)
# Plot 'fitting comparison' (Figure 6.4)
if 5 in selection: calibration_comparison()
# Print model and calibration parameters (Tables 6.2 = C.2 and 6.3 = C.3)
if 6 in selection: model_comparison(N_run=5, K_sim=50, f_P_list=[1.5, 1.0, 0.6])
# Run full calibration model (Figures 6.5 and 6.6 and Table C.4)
if 7 in selection: full_calibration(Nr_iter=5, K_sim=200)