Skip to content

LinAlgError raised when running SMC ABC #18

@BryanRumsey

Description

@BryanRumsey

Error

Traceback (most recent call last):
  File "/stochss/stochss/handlers/util/scripts/start_job.py", line 120, in <module>
    job.run(verbose=args.verbose)
  File "/stochss/stochss/handlers/util/model_inference.py", line 958, in run
    results = smc_abc_inference.infer(*infer_args, **infer_kwargs)
  File "/opt/conda/lib/python3.8/site-packages/sciope/inference/smc_abc.py", line 220, in infer
    kweights = self.perturbation_kernel.pdf(population, new_samples)
  File "/opt/conda/lib/python3.8/site-packages/sciope/utilities/perturbationkernels/multivariate_normal.py", line 45, in pdf
    pdfs.append(multivariate_normal.pdf(x, x0[i], self.cov))
  File "/opt/conda/lib/python3.8/site-packages/scipy/stats/_multivariate.py", line 580, in pdf
    params = self._process_parameters(mean, cov, allow_singular)
  File "/opt/conda/lib/python3.8/site-packages/scipy/stats/_multivariate.py", line 417, in _process_parameters
    psd = _PSD(cov, allow_singular=allow_singular)
  File "/opt/conda/lib/python3.8/site-packages/scipy/stats/_multivariate.py", line 172, in __init__
    raise np.linalg.LinAlgError(msg)
numpy.linalg.LinAlgError: When `allow_singular is False`, the input matrix must be symmetric positive definite.

Model

def create_genetic_toggle_switch(parameter_values=None):
    model = gillespy2.Model(name='Genetic_Toggle_Switch')
    model.volume = 1

    # Variables
    U = gillespy2.Species(name='U', initial_value=10, mode='discrete')
    V = gillespy2.Species(name='V', initial_value=10, mode='discrete')
    model.add_species([
        U, V
    ])

    # Parameters
    alpha1 = gillespy2.Parameter(name='alpha1', expression='1')
    alpha2 = gillespy2.Parameter(name='alpha2', expression='1')
    beta = gillespy2.Parameter(name='beta', expression='2')
    gamma = gillespy2.Parameter(name='gamma', expression='2')
    mu = gillespy2.Parameter(name='mu', expression='1')
    model.add_parameter([
        alpha1, alpha2, beta, gamma, mu
    ])

    # Reactions
    cu = gillespy2.Reaction(
        name='cu',
        reactants={}, products={'U': 1},
        propensity_function='alpha1/(1+pow(V,beta))',
        ode_propensity_function='alpha1/(1+pow(V,beta))'
    )
    cv = gillespy2.Reaction(
        name='cv',
        reactants={}, products={'V': 1},
        propensity_function='alpha2/(1+pow(U,gamma))',
        ode_propensity_function='alpha2/(1+pow(U,gamma))'
    )
    du = gillespy2.Reaction(
        name='du', rate='mu',
        reactants={'U': 1}, products={}
    )
    dv = gillespy2.Reaction(
        name='dv', rate='mu',
        reactants={'V': 1}, products={}
    )
    model.add_reaction([
        cu, cv, du, dv
    ])

    # Timespan
    tspan = gillespy2.TimeSpan.arange(1, t=100)
    model.timespan(tspan)
    return model

Inference

def configure_simulation(trajectories=1):
    solver = gillespy2.SSACSolver(model=model, delete_directory=False)
    kwargs = {
        'number_of_trajectories': trajectories,
        'seed': None,
        'solver': solver,
    }
    return kwargs

kwargs = configure_simulation(100)
results = model.run(**kwargs)

unshaped_obs_data = results.to_array()
shaped_obs_data = unshaped_obs_data.swapaxes(1, 2)
obs_data = shaped_obs_data[:,1:, :]
print(obs_data.shape)

def process(raw_results):
    return raw_results.to_array().swapaxes(1, 2)[:,1:, :]

def simulator(parameter_point):
    model = create_genetic_toggle_switch()

    labels = [
        'alpha1', 'alpha2', 'beta', 'gamma', 'mu'
    ]
    for ndx, parameter in enumerate(parameter_point):
        model.listOfParameters[labels[ndx]].expression = str(parameter)

    kwargs = configure_simulation()
    raw_results = model.run(**kwargs)

    return process(raw_results)

values = numpy.array([
    1.0, 1.0, 2.0, 2.0, 1.0
])
parameter_names = [
    'alpha1', 'alpha2', 'beta', 'gamma', 'mu'
]

lower_bounds = numpy.array([
    0.5, 0.5, 1, 1, 0.5
])
upper_bounds = numpy.array([
    1.5, 1.5, 3, 3, 1.5
])

uni_prior = uniform_prior.UniformPrior(lower_bounds, upper_bounds)

summ_func = identity.Identity()

eps_selector = RelativeEpsilonSelector(20, max_rounds=1)

c = Client()

smc_abc_inference = smc_abc.SMCABC(
    obs_data, sim=simulator, prior_function=uni_prior, summaries_function=summ_func.compute
)

smc_abc_results = smc_abc_inference.infer(
    num_samples=10, batch_size=10, eps_selector=eps_selector, chunk_size=10
)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions