|
| 1 | +# GitHub Wiki Content for StatClean |
| 2 | + |
| 3 | +## Home Page (Home.md) |
| 4 | + |
| 5 | +# Welcome to StatClean Wiki |
| 6 | + |
| 7 | +StatClean is a comprehensive statistical data preprocessing and outlier detection library with formal statistical testing and publication-quality reporting. |
| 8 | + |
| 9 | +## Quick Navigation |
| 10 | + |
| 11 | +- [Installation Guide](Installation-Guide) |
| 12 | +- [Quick Start Tutorial](Quick-Start-Tutorial) |
| 13 | +- [Statistical Methods Guide](Statistical-Methods-Guide) |
| 14 | +- [API Reference](API-Reference) |
| 15 | +- [Advanced Examples](Advanced-Examples) |
| 16 | +- [Performance Tips](Performance-Tips) |
| 17 | +- [Troubleshooting](Troubleshooting) |
| 18 | +- [Contributing](Contributing) |
| 19 | + |
| 20 | +## Key Features |
| 21 | + |
| 22 | +- **Formal Statistical Testing**: Grubbs' test, Dixon's Q-test with p-values |
| 23 | +- **Multivariate Analysis**: Mahalanobis distance outlier detection |
| 24 | +- **Data Transformations**: Box-Cox, logarithmic, square-root transformations |
| 25 | +- **Method Chaining**: Fluent API for streamlined workflows |
| 26 | +- **Publication-Quality Reporting**: Statistical significance testing |
| 27 | + |
| 28 | +## Links |
| 29 | + |
| 30 | +- [GitHub Repository](https://github.com/SubaashNair/StatClean) |
| 31 | +- [PyPI Package](https://pypi.org/project/statclean/) |
| 32 | +- [Documentation](https://subaashnair.github.io/StatClean/) |
| 33 | + |
| 34 | +--- |
| 35 | + |
| 36 | +## Installation Guide (Installation-Guide.md) |
| 37 | + |
| 38 | +# Installation Guide |
| 39 | + |
| 40 | +## Quick Install |
| 41 | + |
| 42 | +```bash |
| 43 | +pip install statclean |
| 44 | +``` |
| 45 | + |
| 46 | +## Requirements |
| 47 | + |
| 48 | +- Python 3.7+ |
| 49 | +- numpy >= 1.19.0 |
| 50 | +- pandas >= 1.2.0 |
| 51 | +- matplotlib >= 3.3.0 |
| 52 | +- seaborn >= 0.11.0 |
| 53 | +- scipy >= 1.6.0 |
| 54 | +- tqdm >= 4.60.0 |
| 55 | + |
| 56 | +## Development Install |
| 57 | + |
| 58 | +```bash |
| 59 | +git clone https://github.com/SubaashNair/StatClean.git |
| 60 | +cd StatClean |
| 61 | +pip install -e . |
| 62 | +``` |
| 63 | + |
| 64 | +## Verification |
| 65 | + |
| 66 | +```python |
| 67 | +from statclean import StatClean |
| 68 | +print("Installation successful!") |
| 69 | +``` |
| 70 | + |
| 71 | +--- |
| 72 | + |
| 73 | +## Quick Start Tutorial (Quick-Start-Tutorial.md) |
| 74 | + |
| 75 | +# Quick Start Tutorial |
| 76 | + |
| 77 | +## Basic Usage |
| 78 | + |
| 79 | +```python |
| 80 | +import pandas as pd |
| 81 | +from statclean import StatClean |
| 82 | + |
| 83 | +# Sample data |
| 84 | +df = pd.DataFrame({ |
| 85 | + 'values': [1, 2, 3, 100, 4, 5, 6] # 100 is an outlier |
| 86 | +}) |
| 87 | + |
| 88 | +# Initialize StatClean |
| 89 | +cleaner = StatClean(df) |
| 90 | + |
| 91 | +# Detect outliers |
| 92 | +outliers = cleaner.detect_outliers_zscore('values') |
| 93 | +print(f"Outliers detected: {outliers.sum()}") |
| 94 | + |
| 95 | +# Remove outliers |
| 96 | +cleaner.remove_outliers_zscore('values') |
| 97 | +cleaned_df = cleaner.clean_df |
| 98 | +print(f"Cleaned shape: {cleaned_df.shape}") |
| 99 | +``` |
| 100 | + |
| 101 | +## Statistical Testing |
| 102 | + |
| 103 | +```python |
| 104 | +# Formal statistical test |
| 105 | +result = cleaner.grubbs_test('values', alpha=0.05) |
| 106 | +print(f"P-value: {result['p_value']:.6f}") |
| 107 | +print(f"Outlier detected: {result['outlier_detected']}") |
| 108 | +``` |
| 109 | + |
| 110 | +## Method Chaining |
| 111 | + |
| 112 | +```python |
| 113 | +# Fluent API |
| 114 | +result = (cleaner |
| 115 | + .set_thresholds(zscore_threshold=2.5) |
| 116 | + .winsorize_outliers_iqr('values') |
| 117 | + .clean_df) |
| 118 | +``` |
| 119 | + |
| 120 | +--- |
| 121 | + |
| 122 | +## Performance Tips (Performance-Tips.md) |
| 123 | + |
| 124 | +# Performance Tips |
| 125 | + |
| 126 | +## Large Datasets |
| 127 | + |
| 128 | +For datasets with >100k rows: |
| 129 | + |
| 130 | +```python |
| 131 | +# Use batch processing |
| 132 | +cleaner.clean_columns(columns, show_progress=True) |
| 133 | + |
| 134 | +# Cache statistics for repeated operations |
| 135 | +cleaner.add_zscore_columns(columns, cache_stats=True) |
| 136 | +``` |
| 137 | + |
| 138 | +## Memory Optimization |
| 139 | + |
| 140 | +```python |
| 141 | +# Process columns individually for memory efficiency |
| 142 | +for col in large_columns: |
| 143 | + cleaner.remove_outliers_zscore(col) |
| 144 | + |
| 145 | +# Use in-place operations when possible |
| 146 | +cleaner = StatClean(df, preserve_index=False) |
| 147 | +``` |
| 148 | + |
| 149 | +## Multivariate Performance |
| 150 | + |
| 151 | +```python |
| 152 | +# For many variables, consider dimensionality reduction first |
| 153 | +from sklearn.decomposition import PCA |
| 154 | +pca_data = PCA(n_components=5).fit_transform(df) |
| 155 | +``` |
| 156 | + |
| 157 | +--- |
| 158 | + |
| 159 | +## Troubleshooting (Troubleshooting.md) |
| 160 | + |
| 161 | +# Troubleshooting |
| 162 | + |
| 163 | +## Common Issues |
| 164 | + |
| 165 | +### ImportError |
| 166 | +```bash |
| 167 | +pip install --upgrade statclean |
| 168 | +``` |
| 169 | + |
| 170 | +### Memory Issues |
| 171 | +```python |
| 172 | +# Process in chunks |
| 173 | +for chunk in pd.read_csv('large_file.csv', chunksize=10000): |
| 174 | + cleaner = StatClean(chunk) |
| 175 | + # Process chunk |
| 176 | +``` |
| 177 | + |
| 178 | +### Visualization Problems |
| 179 | +```bash |
| 180 | +# For headless servers |
| 181 | +export MPLBACKEND=Agg |
| 182 | +``` |
| 183 | + |
| 184 | +### Singular Matrix Error |
| 185 | +This occurs with perfectly correlated variables in Mahalanobis distance: |
| 186 | +```python |
| 187 | +# Remove highly correlated variables first |
| 188 | +correlation_matrix = df.corr() |
| 189 | +# Remove variables with correlation > 0.95 |
| 190 | +``` |
| 191 | + |
| 192 | +## Getting Help |
| 193 | + |
| 194 | +- Check [GitHub Issues](https://github.com/SubaashNair/StatClean/issues) |
| 195 | +- Read [Documentation](https://subaashnair.github.io/StatClean/) |
| 196 | +- Review [Examples](https://subaashnair.github.io/StatClean/examples) |
| 197 | + |
| 198 | +--- |
| 199 | + |
| 200 | +## Contributing (Contributing.md) |
| 201 | + |
| 202 | +# Contributing to StatClean |
| 203 | + |
| 204 | +## Development Setup |
| 205 | + |
| 206 | +```bash |
| 207 | +git clone https://github.com/SubaashNair/StatClean.git |
| 208 | +cd StatClean |
| 209 | +pip install -e . |
| 210 | +pip install pytest |
| 211 | +``` |
| 212 | + |
| 213 | +## Running Tests |
| 214 | + |
| 215 | +```bash |
| 216 | +pytest tests/ |
| 217 | +``` |
| 218 | + |
| 219 | +## Code Style |
| 220 | + |
| 221 | +- Follow PEP 8 |
| 222 | +- Use type hints |
| 223 | +- Add docstrings to all functions |
| 224 | +- No Claude references in commits |
| 225 | + |
| 226 | +## Pull Request Process |
| 227 | + |
| 228 | +1. Fork the repository |
| 229 | +2. Create feature branch: `git checkout -b feature-name` |
| 230 | +3. Make changes with tests |
| 231 | +4. Run test suite: `pytest` |
| 232 | +5. Submit pull request |
| 233 | + |
| 234 | +## Areas for Contribution |
| 235 | + |
| 236 | +- Additional statistical tests |
| 237 | +- Performance optimizations |
| 238 | +- New visualization methods |
| 239 | +- Documentation improvements |
| 240 | +- Bug fixes |
| 241 | + |
| 242 | +--- |
| 243 | + |
| 244 | +Instructions for setting up GitHub Wiki: |
| 245 | + |
| 246 | +1. Go to your GitHub repository: https://github.com/SubaashNair/StatClean |
| 247 | +2. Click on "Wiki" tab |
| 248 | +3. Click "Create the first page" |
| 249 | +4. Copy the content above for each page |
| 250 | +5. Create pages with the exact names shown in parentheses |
| 251 | +6. Set "Home" as the main wiki page |
0 commit comments