-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdetector.py
261 lines (219 loc) · 11 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch.nn as nn
import torch
from util.bit_util import int_to_bin_list
from torch.utils.data import Dataset, DataLoader
import os
import json
import torch.nn.functional as F
from model_key import SubNet
from transformers import GPT2Tokenizer, AutoTokenizer, LlamaTokenizer
import torch.nn as nn
import json
class TransformerClassifier(nn.Module):
def __init__(self, bit_number, b_layers, input_dim, hidden_dim, num_classes=1, num_layers=2):
super(TransformerClassifier, self).__init__()
self.binary_classifier = SubNet(bit_number, b_layers)
self.classifier = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc_hidden = nn.Linear(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, num_classes)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
batch_size, seq_len, _ = x.size()
x1 = x.view(batch_size*seq_len, -1)
features = self.binary_classifier(x1)
features = features.view(batch_size, seq_len, -1) # Ensure LSTM compatible shape
output, _ = self.classifier(features)
output = self.fc_hidden(output[:, -1, :]) # Take the last LSTM output for classification
output = self.sigmoid(output)
output = self.fc(output)
output = self.sigmoid(output)
return output
class Seq2SeqDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def prepare_data(filepath, train_or_test="train", llm_name="gpt2", bit=16, z_value=4):
data = []
if train_or_test == "train":
with open(filepath, 'r') as f:
for line in f:
json_obj = json.loads(line)
inputs = json_obj['Input']
output = json_obj['Output']
label = 1 if output > z_value else 0 # binary classification
inputs_bin = [int_to_bin_list(n, bit) for n in inputs]
data.append((torch.tensor(inputs_bin), torch.tensor(label))) # label is a scalar
else:
with open(filepath, 'r') as f:
for line in f:
json_obj = json.loads(line)
inputs = json_obj['Input']
label = json_obj['Tag']
z_score = json_obj['Z-score']
if llm_name == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
inputs = tokenizer(inputs, return_tensors="pt", add_special_tokens=True)
elif llm_name == "opt-1.3b":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b", use_fast=False)
inputs = tokenizer(inputs, return_tensors="pt", add_special_tokens=True)
elif llm_name == "llama-7b":
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
inputs = tokenizer(inputs, return_tensors="pt", add_special_tokens=True)
inputs_bin = [int_to_bin_list(n, bit) for n in inputs["input_ids"].squeeze()]
data.append((torch.tensor(inputs_bin), torch.tensor(label), torch.tensor(z_score))) # label is a scalar
return data
def pad_sequence_to_fixed_length(inputs, target_length, padding_value=0):
padded_inputs = torch.nn.utils.rnn.pad_sequence(inputs, batch_first=True, padding_value=padding_value)
original_length = padded_inputs.shape[1]
if original_length < target_length:
# If the original sequence is shorter than the target length, we need to further pad the sequences
pad_size = (0, 0, 0, target_length - original_length)
padded_inputs = F.pad(padded_inputs, pad_size, value=padding_value)
elif original_length > target_length:
# If the original sequence is longer than the target length, we need to truncate the sequences
padded_inputs = padded_inputs[:, :target_length, :]
else:
# If the original sequence is the same as the target length, just return the original inputs
padded_inputs = padded_inputs
return padded_inputs
def train_collate_fn(batch):
inputs = [item[0] for item in batch]
targets = [item[1] for item in batch]
inputs_padded = pad_sequence_to_fixed_length(inputs, 200)
return inputs_padded, torch.stack(targets)
def test_collate_fn(batch):
inputs = [item[0] for item in batch]
targets = [item[1] for item in batch]
z_score = [item[2] for item in batch]
inputs_padded = pad_sequence_to_fixed_length(inputs, 200)
return inputs_padded, torch.stack(targets), torch.stack(z_score)
def train_model(_bit_number, _input_dir, model_file, output_model_dir, b_layers, z_value, llm_name):
# Prepare data
train_data = prepare_data(os.path.join(_input_dir, 'train_data.jsonl'), train_or_test="train", bit=_bit_number, z_value=z_value, llm_name=llm_name)
test_data = prepare_data(os.path.join(_input_dir, 'test_data.jsonl'), train_or_test="test", bit=_bit_number, z_value=z_value, llm_name=llm_name)
train_dataset = Seq2SeqDataset(train_data)
test_dataset = Seq2SeqDataset(test_data)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True, collate_fn=train_collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=32, collate_fn=test_collate_fn)
# Initialize model and optimizer
pretrained_dict = torch.load(model_file)
model = TransformerClassifier(_bit_number, b_layers, 64, 128)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
model_dict = model.binary_classifier.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.binary_classifier.load_state_dict(model_dict, strict=True)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
# Define the loss function
loss_fn = torch.nn.BCELoss()
for param in model.binary_classifier.parameters():
param.requires_grad = False
print("private detector:")
# save the average acc, tpr, fpr, tnr, fnr of the last 5 epochs
acc_avg, tpr_avg, fpr_avg, tnr_avg, fnr_avg, f1_avg = 0, 0, 0, 0, 0, 0
# Train and evaluate
epochs = 80
for epoch in range(epochs):
model.train()
train_losses = []
correct = 0
total = 0
for inputs, targets in train_dataloader:
targets = targets.cuda()
optimizer.zero_grad()
outputs = model((inputs.float()).cuda())
outputs = outputs.reshape([-1])
loss = loss_fn(outputs, (targets.float()))
loss.backward()
optimizer.step()
train_losses.append(loss.item())
# calculate accuracy
predicted = (outputs.data > 0.5).float()
total += targets.size(0)
correct += (predicted == targets).sum().item()
train_accuracy = 100 * correct / total
model.eval()
test_losses = []
correct, total, tp, fp, fn, tn = 0, 0, 0, 0, 0, 0
with torch.no_grad():
for inputs, targets, z_score in test_dataloader:
outputs = model((inputs.float()).cuda()).cuda()
targets = targets.cuda()
outputs = outputs.reshape([-1])
loss = loss_fn(outputs, targets.float())
test_losses.append(loss.item())
# calculate acc, tp, fp, fn, tn, f1
predicted = (outputs.data > 0.5).int()
total += targets.size(0)
correct += (predicted == targets).sum().item()
tp += (predicted & targets).sum().item()
fp += (predicted & (~(targets.bool()))).sum().item()
fn += ((~predicted) & targets).sum().item()
tn += ((~predicted) & (~(targets.bool()))).sum().item()
test_accuracy = 100 * correct / total
test_tpr = 100 * tp / (tp + fn)
test_fpr = 100 * fp / (fp + tn)
test_tnr = 100 * tn / (fp + tn)
test_fnr = 100 * fn / (tp + fn)
test_f1 = 100 * 2 * tp / (2 * tp + fn + fp)
print(f'Epoch: {epoch}, Train Loss: {sum(train_losses) / len(train_losses)}, Train Accuracy: {train_accuracy}%, Test Loss: {sum(test_losses) / len(test_losses)}, Test Accuracy: {test_accuracy}%, Test TPR: {test_tpr}%, Test FPR: {test_fpr}%, Test TNR: {test_tnr}%, Test FNR: {test_fnr}%, Test F1: {test_f1}%')
# calculate the average acc, tpr, fpr, tnr, fnr, f1 of the last 5 epochs
if epochs - 5 <= epoch < epochs:
acc_avg += test_accuracy
tpr_avg += test_tpr
fpr_avg += test_fpr
tnr_avg += test_tnr
fnr_avg += test_fnr
f1_avg += test_f1
acc_avg /= 5
tpr_avg /= 5
fpr_avg /= 5
tnr_avg /= 5
fnr_avg /= 5
f1_avg /= 5
os.makedirs(os.path.dirname(output_model_dir + "new.pt"), exist_ok=True)
torch.save(model.binary_classifier.state_dict(), output_model_dir + "new.pt")
print(f'Test Accuracy: {acc_avg}%, Test TPR: {tpr_avg}%, Test FPR: {fpr_avg}%, Test TNR: {tnr_avg}%, Test FNR: {fnr_avg}%, Test F1: {f1_avg}%')
print("public detector:")
corr_num, tot_num, tp, fp, fn, tn = 0, 0, 0, 0, 0, 0
with open(os.path.join(_input_dir, 'test_data.jsonl'), 'r') as f:
for line in f:
tot_num += 1
json_obj = json.loads(line)
label = json_obj['Tag']
z_score = json_obj['Z-score']
predicted = (z_score > z_value)
if predicted == label:
corr_num += 1
if predicted == 1 and label == 1:
tp += 1
if predicted == 1 and label == 0:
fp += 1
if predicted == 0 and label == 1:
fn += 1
if predicted == 0 and label == 0:
tn += 1
test_accuracy = 100 * corr_num/tot_num
test_tpr = 100 * tp / (tp + fn)
test_fpr = 100 * fp / (fp + tn)
test_tnr = 100 * tn / (fp + tn)
test_fnr = 100 * fn / (tp + fn)
test_f1 = 100 * 2 * tp / (2 * tp + fn + fp)
print(f'Test Accuracy: {test_accuracy}%, Test TPR: {test_tpr}%, Test FPR: {test_fpr}%, Test TNR: {test_tnr}%, Test FNR: {test_fnr}%, Test F1: {test_f1}%')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--llm_name', type=str, default="gpt2")
parser.add_argument('--bit_number', type=int, default=4)
parser.add_argument('--window_size', type=int, default=4)
parser.add_argument('--input', type=str, default='data/4bit-model-key2')
parser.add_argument('--model_file', type=str, default='model/model_parameters4.pt')
parser.add_argument('--output_model_dir', type=str, default='model/model_parameters4.pt')
parser.add_argument('--layers', type=int, default=4)
parser.add_argument('--z_value', type=float, default=4.0)
args = parser.parse_args()
train_model(args.bit_number, args.input, args.model_file, args.output_model_dir, args.layers, args.z_value, args.llm_name)