-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwatermark_model.py
413 lines (339 loc) · 16.9 KB
/
watermark_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import torch
from transformers import (GPT2Tokenizer,
GPT2LMHeadModel,
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
LogitsProcessor,
LogitsProcessorList)
from math import sqrt
import random
import json
from tqdm import tqdm
from model_key import get_model, get_value
from functools import partial
import os
def create_directory_for_file(file_path):
directory = os.path.dirname(file_path)
if not os.path.exists(directory):
os.makedirs(directory)
def int_to_bin_list(n, number=4):
bin_str = format(n, 'b').zfill(number)
return [int(b) for b in bin_str]
class CustomLogitsProcessor(LogitsProcessor):
def __init__(self, llm_name):
super().__init__()
self.llm_name = llm_name
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if self.llm_name == "gpt2":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][50256] = -10000
elif self.llm_name == "opt-1.3b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][2] = -10000
elif self.llm_name == "llama-7b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][1] = -10000
return scores
class WatermarkLogitsProcessor(LogitsProcessor):
def __init__(self, vocab, delta, model, window_size, cache, bit_number, beam_size, llm_name):
self.vocab = vocab
self.delta = delta
self.model = model
self.window_size = window_size
self.cache = cache
self.bit_number = bit_number
self.llm_name = llm_name
if beam_size > 0:
self.beam_size = beam_size
self.mode = "beam"
else:
self.mode = "sample"
def _get_greenlist_ids(self, input_ids, scores):
greenlist_ids = []
# Get the last 'window_size - 1' items from input_ids
last_nums = input_ids[-(self.window_size-1):] if self.window_size-1 > 0 else []
if self.mode == "sample":
_, candidate_tokens = torch.topk(input=scores, k=20, largest=True, sorted=False)
else:
# Get the score at index 'beam_size'
threshold_score = torch.topk(input=scores, k=self.beam_size, largest=True, sorted=False)[0][-1]
# Get all indices where score is greater than 'score - delta'
candidate_tokens = (scores >= (threshold_score - self.delta)).nonzero(as_tuple=True)[0]
for v in candidate_tokens:
# Append the current number to the list
pair = list(last_nums) + [v]
merged_tuple = tuple(pair)
bin_list = [int_to_bin_list(num, self.bit_number) for num in pair]
# load & update cache
if merged_tuple in self.cache:
result = self.cache[merged_tuple]
else:
result = get_value(torch.FloatTensor(bin_list).unsqueeze(0), self.model)
self.cache[merged_tuple] = result
if result:
greenlist_ids.append(int(v))
return greenlist_ids
def _bias_greenlist_logits(self, scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float) -> torch.Tensor:
scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias
return scores
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# if the length of input_id < self.window_size - 1, there is no need to add bias
if input_ids.shape[-1] < self.window_size - 1:
if self.llm_name == "gpt2":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][50256] = -10000
elif self.llm_name == "opt-1.3b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][2] = -10000
elif self.llm_name == "llama-7b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][1] = -10000
return scores
green_tokens_mask = torch.zeros_like(scores)
for b_idx in range(input_ids.shape[0]):
greenlist_ids = self._get_greenlist_ids(input_ids[b_idx], scores=scores[b_idx])
green_tokens_mask[b_idx][greenlist_ids] = 1
green_tokens_mask = green_tokens_mask.bool()
scores = self._bias_greenlist_logits(scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta)
if self.llm_name == "gpt2":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][50256] = -10000
elif self.llm_name == "opt-1.3b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][2] = -10000
elif self.llm_name == "llama-7b":
for b_idx in range(input_ids.shape[0]):
scores[b_idx][1] = -10000
return scores
class Watermark:
def __init__(
self,
bit_number: int = 8,
window_size: int = 5,
layers: int = 3,
gamma: float = 0.5,
delta: float = 2.0,
model_dir: str = None,
beam_size: int = 0,
):
# watermarking parameters
self.bit_number = bit_number
self.vocab = list(range(1, 2 ** bit_number-1))
self.vocab_size = len(self.vocab)
self.gamma = gamma
self.min_prefix_len = window_size-1
self.window_size = window_size
self.model = get_model(bit_number, window_size, model_dir, layers) # 划分器
self.cache = {}
self.delta = delta
self.beam_size = beam_size
def random_sample(self, input_ids, is_green):
# Get the last 'window_size - 1' items from input_ids
last_nums = input_ids[-(self.window_size-1):] if self.window_size-1 > 0 else []
while True:
number = random.choice(self.vocab)
# Append the new random number to the list
pair = list(last_nums) + [number]
merged_tuple = tuple(pair)
bin_list = [int_to_bin_list(num, self.bit_number) for num in pair]
if merged_tuple in self.cache:
result = self.cache[merged_tuple]
else:
result = get_value(torch.FloatTensor(bin_list).unsqueeze(0), self.model)
self.cache[merged_tuple] = result
if is_green and result:
return number
elif not is_green and not result:
return number
def judge_green(self, input_ids, current_number):
# Get the last 'window_size - 1' items from input_ids
last_nums = input_ids[-(self.window_size-1):] if self.window_size-1 > 0 else []
# Append the current number to the list
pair = list(last_nums) + [current_number]
merged_tuple = tuple(pair)
bin_list = [int_to_bin_list(num, self.bit_number) for num in pair]
# merged_list = sum(bin_list, [])
# load & update cache
if merged_tuple in self.cache:
result = self.cache[merged_tuple]
else:
result = get_value(torch.FloatTensor(bin_list).unsqueeze(0), self.model)
self.cache[merged_tuple] = result
return result
def green_token_mask_and_stats(self, input_ids: torch.Tensor):
mask_list = []
green_token_count = 0
for idx in range(self.min_prefix_len, len(input_ids)):
curr_token = input_ids[idx]
if self.judge_green(input_ids[:idx], curr_token):
mask_list.append(True)
green_token_count += 1
else:
mask_list.append(False)
num_tokens_scored = len(input_ids) - self.min_prefix_len
z_score = self._compute_z_score(green_token_count, num_tokens_scored)
return mask_list, green_token_count, z_score
def _compute_z_score(self, observed_count, T):
# count refers to number of green tokens, T is total number of tokens
sigma = 0.01
expected_count = self.gamma
numer = observed_count - expected_count * T
denom = sqrt(T * expected_count * (1 - expected_count) + sigma * sigma * T)
z = numer / denom
return z
def generate_list_with_green_ratio(self, length: int, green_ratio: float):
token_list = random.sample(self.vocab, self.window_size - 1) if self.window_size - 1 > 0 else random.sample(self.vocab, 1)
is_green = []
while len(token_list) < length:
green = 1 if random.random() < green_ratio else 0
if green:
token = self.random_sample(torch.LongTensor(token_list), True)
token_list.append(token)
is_green.append(1)
else:
token = self.random_sample(torch.LongTensor(token_list), False)
token_list.append(token)
is_green.append(0)
# loop
is_green_append = []
for i in range(0, self.window_size - 1):
tail_slice = token_list[-(self.window_size - 1 - i):]
head_slice = token_list[:i]
input_slice = tail_slice + head_slice
is_green_append.append(self.judge_green(input_slice, token_list[i]))
is_green = is_green_append + is_green
return token_list, is_green
def generate_and_save_train_data(self, num_samples, output_dir):
train_data = []
for _ in tqdm(range(num_samples)):
length = 200
green_ratio = random.random()
token_list, is_green = self.generate_list_with_green_ratio(length, green_ratio)
_, _, z_score = self.green_token_mask_and_stats(torch.tensor(token_list))
train_data.append((tuple(token_list), tuple(is_green), z_score))
train_data = list(set(train_data))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, 'train_data.jsonl'), 'w') as f:
for item in train_data:
json.dump({"Input": [int(i) for i in item[0]], "Tag": [int(i) for i in item[1]], "Output": float(item[2])}, f)
f.write('\n')
def generate_and_save_test_data(self, llm_name, dataset_name, output_dir, sampling_temp, max_new_tokens):
"""Instatiate the WatermarkLogitsProcessor according to the watermark parameters
and generate watermarked text by passing it to the generate method of the model
as a logits processor. """
print("loading llm...")
device = "cuda" if torch.cuda.is_available() else "cpu"
if llm_name == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model = model.to(device)
elif llm_name == "opt-1.3b":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype=torch.float16).cuda()
model = model.to(device)
elif llm_name == "llama-7b":
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = AutoModelForCausalLM.from_pretrained("decapoda-research/llama-7b-hf", device_map='auto')
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
delta=self.delta,
model=self.model,
window_size=self.window_size,
cache=self.cache,
bit_number=self.bit_number,
beam_size = self.beam_size,
llm_name=llm_name)
custom_processor = CustomLogitsProcessor(llm_name=llm_name)
gen_kwargs = dict(max_new_tokens=max_new_tokens)
if self.beam_size == 0:
gen_kwargs.update(dict(
do_sample=True,
top_k=20,
temperature=sampling_temp
))
else:
gen_kwargs.update(dict(
num_beams=self.beam_size
))
print(gen_kwargs)
generate_with_watermark = partial(
model.generate,
logits_processor=LogitsProcessorList([watermark_processor]),
no_repeat_ngram_size=4,
**gen_kwargs
)
generate_without_watermark = partial(
model.generate,
logits_processor=LogitsProcessorList([custom_processor]),
**gen_kwargs
)
decoded_output_with_watermark = []
decoded_output_without_watermark = []
print("dataset")
print(dataset_name)
# load dataset
print("loading dataset...")
if dataset_name == "c4":
with open("./original_data/c4_validation.json") as f1:
lines = f1.readlines()
elif dataset_name == "dbpedia":
with open("./original_data/dbpedia_validation.json") as f1:
lines = f1.readlines()
idx = 1
for line in lines:
try:
if idx > 500: # you can change it
break
data = json.loads(line)
text = data['text']
text_tokenized = (tokenizer(text, return_tensors="pt", add_special_tokens=True)).to(device)
prompt_length = 30
if text_tokenized["input_ids"].shape[-1] < 230:
continue
prompt = {}
prompt["input_ids"] = text_tokenized["input_ids"][:, : prompt_length]
prompt["attention_mask"] = text_tokenized["attention_mask"][:, : prompt_length]
print("generate with watermark...")
output_with_watermark = generate_with_watermark(**prompt)
output_with_watermark = output_with_watermark[:,prompt["input_ids"].shape[-1]:]
print("get unwatermarked text...")
output_without_watermark = text_tokenized["input_ids"][:,prompt_length:prompt_length + 200]
_, _, z_score = self.green_token_mask_and_stats(output_with_watermark.squeeze(0))
decoded_output_with_watermark.append({"Input": tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0], "Tag": 1, "Z-score": z_score})
_, _, z_score = self.green_token_mask_and_stats(output_without_watermark.squeeze(0))
decoded_output_without_watermark.append({"Input": tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0], "Tag": 0, "Z-score": z_score})
print(idx)
idx += 1
except StopIteration:
break
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, 'test_data.jsonl'), 'w') as f:
for item in decoded_output_with_watermark:
json.dump({"Input": item["Input"], "Tag": item["Tag"], "Z-score": item["Z-score"]}, f)
f.write('\n')
for item in decoded_output_without_watermark:
json.dump({"Input": item["Input"], "Tag": item["Tag"], "Z-score": item["Z-score"]}, f)
f.write('\n')
if __name__ == "__main__":
## use argparse to set three parameters, bit_number, num_samples, output_dir
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--llm_name", type=str, default="gpt2")
parser.add_argument("--dataset_name", type=str, default="c4")
parser.add_argument("--bit_number", type=int, default=16)
parser.add_argument("--window_size", type=int, default=5)
parser.add_argument("--layers", type=int, default=5)
parser.add_argument("--train_num_samples", type=int, default=10000)
parser.add_argument("--model_dir", type=str, default="model/model_16_window_3_layer_5_new.pt")
parser.add_argument("--output_dir", type=str, default="data1")
parser.add_argument("--use_sampling", type=bool, default=True)
parser.add_argument("--sampling_temp", type=float, default=0.7)
parser.add_argument("--n_beams", type=int, default=8)
parser.add_argument("--max_new_tokens", type=int, default=200)
parser.add_argument("--delta", type=float, default=2.0)
args = parser.parse_args()
watermark = Watermark(args.bit_number, args.window_size, args.layers, delta=args.delta, model_dir=args.model_dir + "combine_model.pt", beam_size=args.n_beams)
watermark.generate_and_save_train_data(args.train_num_samples, args.output_dir)
watermark.generate_and_save_test_data(args.llm_name, args.dataset_name, args.output_dir, args.sampling_temp, args.max_new_tokens)