|
| 1 | +import os |
| 2 | +import json |
| 3 | +from datasets import load_dataset |
| 4 | + |
| 5 | + |
| 6 | +def generate_sequential_filename(index): |
| 7 | + """Generate sequential filename with leading zeros (00001.png, 00002.png, etc.).""" |
| 8 | + return f"{index + 1:05d}.png" |
| 9 | + |
| 10 | + |
| 11 | +def setup_directories(base_dir): |
| 12 | + """Create train directory if it doesn't exist.""" |
| 13 | + train_dir = os.path.join(base_dir, "train") |
| 14 | + os.makedirs(train_dir, exist_ok=True) |
| 15 | + return train_dir |
| 16 | + |
| 17 | + |
| 18 | +def main(): |
| 19 | + # Setup directories |
| 20 | + base_dir = os.path.dirname(os.path.abspath(__file__)) |
| 21 | + train_dir = setup_directories(base_dir) |
| 22 | + |
| 23 | + # Load the dataset |
| 24 | + print("Loading diffusiondb-pixelart dataset (2k_all subset)...") |
| 25 | + dataset = load_dataset("jainr3/diffusiondb-pixelart", "2k_all") |
| 26 | + |
| 27 | + # Get all data |
| 28 | + data = dataset["train"] |
| 29 | + num_samples = len(data) |
| 30 | + |
| 31 | + # Process all data as train data |
| 32 | + train_metadata = [] |
| 33 | + print(f"Processing all {num_samples} samples for training...") |
| 34 | + |
| 35 | + for idx in range(num_samples): |
| 36 | + item = data[idx] |
| 37 | + prompt = item["text"] |
| 38 | + image = item["image"] |
| 39 | + |
| 40 | + filename = generate_sequential_filename(idx) |
| 41 | + save_path = os.path.join(train_dir, filename) |
| 42 | + |
| 43 | + # Save the image |
| 44 | + image.save(save_path) |
| 45 | + |
| 46 | + train_metadata.append({"file_name": filename, "prompt": prompt}) |
| 47 | + |
| 48 | + # Save train metadata |
| 49 | + with open(os.path.join(train_dir, "metadata.jsonl"), "w", encoding="utf-8") as f: |
| 50 | + for item in train_metadata: |
| 51 | + f.write(json.dumps(item) + "\n") |
| 52 | + |
| 53 | + print("Conversion complete!") |
| 54 | + print(f"Total samples: {len(train_metadata)}") |
| 55 | + |
| 56 | + |
| 57 | +if __name__ == "__main__": |
| 58 | + main() |
0 commit comments