-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathAttack_Blended.py
168 lines (134 loc) · 4 KB
/
Attack_Blended.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
'''
This is the example code of benign training and poisoned training on torchvision.datasets.DatasetFolder.
Dataset is ImageNet50.
Attack method is Blended.
'''
import os
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import torchvision
from torchvision.transforms import Compose, ToTensor, RandomResizedCrop, RandomHorizontalFlip, Normalize
import core
global_seed = 666
deterministic = True
torch.manual_seed(global_seed)
# Change dataset to ImageNet50
dataset = torchvision.datasets.ImageFolder
transform_train = Compose([
RandomResizedCrop(224),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
trainset = dataset(root='./data/ImageNet50/train', transform=transform_train)
transform_test = Compose([
RandomResizedCrop(224),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
testset = dataset(root='./data/ImageNet50/val', transform=transform_test)
# Update pattern and weight for ImageNet50 (224x224 images)
pattern = torch.zeros((3, 224, 224), dtype=torch.uint8)
pattern[:, -3:, -3:] = 255
weight = torch.zeros((3, 224, 224), dtype=torch.float32)
weight[:, -3:, -3:] = 0.2
blended = core.Blended(
train_dataset=trainset,
test_dataset=testset,
model=core.models.ResNet(18, num_classes=50), # Use ResNet for ImageNet50
loss=nn.CrossEntropyLoss(),
pattern=pattern,
weight=weight,
y_target=1,
poisoned_rate=0.1, # 设置投毒率为10%
seed=global_seed,
deterministic=deterministic
)
poisoned_train_dataset, poisoned_test_dataset = blended.get_poisoned_dataset()
index = 0 # 确保在使用之前定义 index
# Show an Example of Poisoned Training Samples
x, y = poisoned_train_dataset[index]
print(y)
for a in x[0]:
for b in a:
print("%-4.2f" % float(b), end=' ')
print()
# Show an Example of Poisoned Testing Samples
x, y = poisoned_test_dataset[index]
print(y)
for a in x[0]:
for b in a:
print("%-4.2f" % float(b), end=' ')
print()
# Train Benign Model
schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '3',
'GPU_num': 1,
'benign_training': True,
'batch_size': 128,
'num_workers': 4,
'lr': 0.1,
'momentum': 0.9,
'weight_decay': 5e-4,
'gamma': 0.1,
'schedule': [30, 60, 90],
'epochs': 100,
'log_iteration_interval': 100,
'test_epoch_interval': 10,
'save_epoch_interval': 10,
'save_dir': 'experiments',
'experiment_name': 'train_benign_ImageNet50_Blended'
}
blended.train(schedule)
benign_model = blended.get_model()
torch.save(benign_model.state_dict(), 'benign_model_resnet18.pt')
# Test Benign Model
test_schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '3',
'GPU_num': 1,
'batch_size': 128,
'num_workers': 4,
'save_dir': 'experiments',
'experiment_name': 'test_benign_ImageNet50_Blended'
}
blended.test(test_schedule)
torch.save(benign_model.state_dict(), 'benign_model_resnet18_tested.pt')
blended.model = core.models.ResNet(18, num_classes=50)
# Train Infected Model
schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '3',
'GPU_num': 1,
'benign_training': False,
'batch_size': 128,
'num_workers': 4,
'lr': 0.1,
'momentum': 0.9,
'weight_decay': 5e-4,
'gamma': 0.1,
'schedule': [30, 60, 90],
'epochs': 100,
'log_iteration_interval': 100,
'test_epoch_interval': 10,
'save_epoch_interval': 10,
'save_dir': 'experiments',
'experiment_name': 'train_poisoned_ImageNet50_Blended'
}
blended.train(schedule)
infected_model = blended.get_model()
torch.save(infected_model.state_dict(), 'infected_model_resnet18.pt')
# Test Infected Model
test_schedule = {
'device': 'GPU',
'CUDA_VISIBLE_DEVICES': '3',
'GPU_num': 1,
'batch_size': 128,
'num_workers': 4,
'save_dir': 'experiments',
'experiment_name': 'test_poisoned_ImageNet50_Blended'
}
blended.test(test_schedule)
torch.save(infected_model.state_dict(), 'infected_model_resnet18_tested.pt')