-
Notifications
You must be signed in to change notification settings - Fork 362
Description
1 执行命令:
python -m trt.export_onnx --model-root ./ckpts --infer-mode fa --no-enhance --load-key ema --model DiT-XL/2 --image-size 1024 1024
报错信息:
(hydit) root@L20:~/HunyuanDiT# python -m trt.export_onnx --model-root ./ckpts --infer-mode fa --no-enhance --load-key ema --model DiT-XL/2 --image-size 1024 1024
[2025-09-30 10:56:09,478] [INFO] [real_accelerator.py:239:get_accelerator] Setting ds_accelerator to cuda (auto detect)
2025-09-30 10:56:11.188 | INFO | main:init:42 - Got text-to-image model root path: ckpts/t2i
2025-09-30 10:56:11.188 | INFO | main:load_model:57 - Building HunYuan-DiT model...
2025-09-30 10:56:11.188 | INFO | hydit.modules.models:init:343 - Enable Flash Attention.
2025-09-30 10:56:11.396 | INFO | hydit.modules.models:init:402 - Number of tokens: 4096
2025-09-30 10:56:18.166 | INFO | main:load_model:79 - Loading torch model ckpts/t2i/model/pytorch_model_ema.pt...
Traceback (most recent call last):
File "/root/miniconda3/envs/hydit/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/hydit/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/root/HunyuanDiT/trt/export_onnx.py", line 375, in
exporter.export()
File "/root/HunyuanDiT/trt/export_onnx.py", line 90, in export
self.load_model()
File "/root/HunyuanDiT/trt/export_onnx.py", line 81, in load_model
self.model.load_state_dict(state_dict)
File "/root/miniconda3/envs/hydit/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2624, in load_state_dict
raise RuntimeError(
RuntimeError: Error(s) in loading state_dict for HunYuanDiT:
Missing key(s) in state_dict: "blocks.15.skip_norm.weight", "blocks.15.skip_norm.bias", "blocks.15.skip_linear.weight", "blocks.15.skip_linear.bias", "blocks.16.skip_norm.weight", "blocks.16.skip_norm.bias", "blocks.16.skip_linear.weight", "blocks.16.skip_linear.bias", "blocks.17.skip_norm.weight", "blocks.17.skip_norm.bias", "blocks.17.skip_linear.weight", "blocks.17.skip_linear.bias", "blocks.18.skip_norm.weight", "blocks.18.skip_norm.bias", "blocks.18.skip_linear.weight", "blocks.18.skip_linear.bias", "blocks.19.skip_norm.weight", "blocks.19.skip_norm.bias", "blocks.19.skip_linear.weight", "blocks.19.skip_linear.bias", "blocks.20.skip_norm.weight", "blocks.20.skip_norm.bias", "blocks.20.skip_linear.weight", "blocks.20.skip_linear.bias".
Unexpected key(s) in state_dict: "blocks.28.norm1.weight", "blocks.28.norm1.bias", "blocks.28.attn1.Wqkv.weight", "blocks.28.attn1.Wqkv.bias", "blocks.28.attn1.q_norm.weight", "blocks.28.attn1.q_norm.bias", "blocks.28.attn1.k_norm.weight", "blocks.28.attn1.k_norm.bias", "blocks.28.attn1.out_proj.weight", "blocks.28.attn1.out_proj.bias", "blocks.28.norm2.weight", "blocks.28.norm2.bias", "blocks.28.mlp.fc1.weight", "blocks.28.mlp.fc1.bias", "blocks.28.mlp.fc2.weight", "blocks.28.mlp.fc2.bias", "blocks.28.default_modulation.1.weight", "blocks.28.default_modulation.1.bias", "blocks.28.attn2.q_proj.weight", "blocks.28.attn2.q_proj.bias", "blocks.28.attn2.kv_proj.weight", "blocks.28.attn2.kv_proj.bias", "blocks.28.attn2.q_norm.weight", "blocks.28.attn2.q_norm.bias", "blocks.28.attn2.k_norm.weight", "blocks.28.attn2.k_norm.bias", "blocks.28.attn2.out_proj.weight", "blocks.28.attn2.out_proj.bias", "blocks.28.norm3.weight", "blocks.28.norm3.bias", "blocks.28.skip_norm.weight", "blocks.28.skip_norm.bias", "blocks.28.skip_linear.weight", "blocks.28.skip_linear.bias", "blocks.29.norm1.weight", "blocks.29.norm1.bias", "blocks.29.attn1.Wqkv.weight", "blocks.29.attn1.Wqkv.bias", "blocks.29.attn1.q_norm.weight", "blocks.29.attn1.q_norm.bias", "blocks.29.attn1.k_norm.weight", "blocks.29.attn1.k_norm.bias", "blocks.29.attn1.out_proj.weight", "blocks.29.attn1.out_proj.bias", "blocks.29.norm2.weight", "blocks.29.norm2.bias", "blocks.29.mlp.fc1.weight", "blocks.29.mlp.fc1.bias", "blocks.29.mlp.fc2.weight", "blocks.29.mlp.fc2.bias", "blocks.29.default_modulation.1.weight", "blocks.29.default_modulation.1.bias", "blocks.29.attn2.q_proj.weight", "blocks.29.attn2.q_proj.bias", "blocks.29.attn2.kv_proj.weight", "blocks.29.attn2.kv_proj.bias", "blocks.29.attn2.q_norm.weight", "blocks.29.attn2.q_norm.bias", "blocks.29.attn2.k_norm.weight", "blocks.29.attn2.k_norm.bias", "blocks.29.attn2.out_proj.weight", "blocks.29.attn2.out_proj.bias", "blocks.29.norm3.weight", "blocks.29.norm3.bias", "blocks.29.skip_norm.weight", "blocks.29.skip_norm.bias", "blocks.29.skip_linear.weight", "blocks.29.skip_linear.bias", "blocks.30.norm1.weight", "blocks.30.norm1.bias", "blocks.30.attn1.Wqkv.weight", "blocks.30.attn1.Wqkv.bias", "blocks.30.attn1.q_norm.weight", "blocks.30.attn1.q_norm.bias", "blocks.30.attn1.k_norm.weight", "blocks.30.attn1.k_norm.bias", "blocks.30.attn1.out_proj.weight", "blocks.30.attn1.out_proj.bias", "blocks.30.norm2.weight", "blocks.30.norm2.bias", "blocks.30.mlp.fc1.weight", "blocks.30.mlp.fc1.bias", "blocks.30.mlp.fc2.weight", "blocks.30.mlp.fc2.bias", "blocks.30.default_modulation.1.weight", "blocks.30.default_modulation.1.bias", "blocks.30.attn2.q_proj.weight", "blocks.30.attn2.q_proj.bias", "blocks.30.attn2.kv_proj.weight", "blocks.30.attn2.kv_proj.bias", "blocks.30.attn2.q_norm.weight", "blocks.30.attn2.q_norm.bias", "blocks.30.attn2.k_norm.weight", "blocks.30.attn2.k_norm.bias", "blocks.30.attn2.out_proj.weight", "blocks.30.attn2.out_proj.bias", "blocks.30.norm3.weight", "blocks.30.norm3.bias", "blocks.30.skip_norm.weight", "blocks.30.skip_norm.bias", "blocks.30.skip_linear.weight", "blocks.30.skip_linear.bias", "blocks.31.norm1.weight", "blocks.31.norm1.bias", "blocks.31.attn1.Wqkv.weight", "blocks.31.attn1.Wqkv.bias", "blocks.31.attn1.q_norm.weight", "blocks.31.attn1.q_norm.bias", "blocks.31.attn1.k_norm.weight", "blocks.31.attn1.k_norm.bias", "blocks.31.attn1.out_proj.weight", "blocks.31.attn1.out_proj.bias", "blocks.31.norm2.weight", "blocks.31.norm2.bias", "blocks.31.mlp.fc1.weight", "blocks.31.mlp.fc1.bias", "blocks.31.mlp.fc2.weight", "blocks.31.mlp.fc2.bias", "blocks.31.default_modulation.1.weight", "blocks.31.default_modulation.1.bias", "blocks.31.attn2.q_proj.weight", "blocks.31.attn2.q_proj.bias", "blocks.31.attn2.kv_proj.weight", "blocks.31.attn2.kv_proj.bias", "blocks.31.attn2.q_norm.weight", "blocks.31.attn2.q_norm.bias", "blocks.31.attn2.k_norm.weight", "blocks.31.attn2.k_norm.bias", "blocks.31.attn2.out_proj.weight", "blocks.31.attn2.out_proj.bias", "blocks.31.norm3.weight", "blocks.31.norm3.bias", "blocks.31.skip_norm.weight", "blocks.31.skip_norm.bias", "blocks.31.skip_linear.weight", "blocks.31.skip_linear.bias", "blocks.32.norm1.weight", "blocks.32.norm1.bias", "blocks.32.attn1.Wqkv.weight", "blocks.32.attn1.Wqkv.bias", "blocks.32.attn1.q_norm.weight", "blocks.32.attn1.q_norm.bias", "blocks.32.attn1.k_norm.weight", "blocks.32.attn1.k_norm.bias", "blocks.32.attn1.out_proj.weight", "blocks.32.attn1.out_proj.bias", "blocks.32.norm2.weight", "blocks.32.norm2.bias", "blocks.32.mlp.fc1.weight", "blocks.32.mlp.fc1.bias", "blocks.32.mlp.fc2.weight", "blocks.32.mlp.fc2.bias", "blocks.32.default_modulation.1.weight", "blocks.32.default_modulation.1.bias", "blocks.32.attn2.q_proj.weight", "blocks.32.attn2.q_proj.bias", "blocks.32.attn2.kv_proj.weight", "blocks.32.attn2.kv_proj.bias", "blocks.32.attn2.q_norm.weight", "blocks.32.attn2.q_norm.bias", "blocks.32.attn2.k_norm.weight", "blocks.32.attn2.k_norm.bias", "blocks.32.attn2.out_proj.weight", "blocks.32.attn2.out_proj.bias", "blocks.32.norm3.weight", "blocks.32.norm3.bias", "blocks.32.skip_norm.weight", "blocks.32.skip_norm.bias", "blocks.32.skip_linear.weight", "blocks.32.skip_linear.bias", "blocks.33.norm1.weight", "blocks.33.norm1.bias", "blocks.33.attn1.Wqkv.weight", "blocks.33.attn1.Wqkv.bias", "blocks.33.attn1.q_norm.weight", "blocks.33.attn1.q_norm.bias", "blocks.33.attn1.k_norm.weight", "blocks.33.attn1.k_norm.bias", "blocks.33.attn1.out_proj.weight", "blocks.33.attn1.out_proj.bias", "blocks.33.norm2.weight", "blocks.33.norm2.bias", "blocks.33.mlp.fc1.weight", "blocks.33.mlp.fc1.bias", "blocks.33.mlp.fc2.weight", "blocks.33.mlp.fc2.bias", "blocks.33.default_modulation.1.weight", "blocks.33.default_modulation.1.bias", "blocks.33.attn2.q_proj.weight", "blocks.33.attn2.q_proj.bias", "blocks.33.attn2.kv_proj.weight", "blocks.33.attn2.kv_proj.bias", "blocks.33.attn2.q_norm.weight", "blocks.33.attn2.q_norm.bias", "blocks.33.attn2.k_norm.weight", "blocks.33.attn2.k_norm.bias", "blocks.33.attn2.out_proj.weight", "blocks.33.attn2.out_proj.bias", "blocks.33.norm3.weight", "blocks.33.norm3.bias", "blocks.33.skip_norm.weight", "blocks.33.skip_norm.bias", "blocks.33.skip_linear.weight", "blocks.33.skip_linear.bias", "blocks.34.norm1.weight", "blocks.34.norm1.bias", "blocks.34.attn1.Wqkv.weight", "blocks.34.attn1.Wqkv.bias", "blocks.34.attn1.q_norm.weight", "blocks.34.attn1.q_norm.bias", "blocks.34.attn1.k_norm.weight", "blocks.34.attn1.k_norm.bias", "blocks.34.attn1.out_proj.weight", "blocks.34.attn1.out_proj.bias", "blocks.34.norm2.weight", "blocks.34.norm2.bias", "blocks.34.mlp.fc1.weight", "blocks.34.mlp.fc1.bias", "blocks.34.mlp.fc2.weight", "blocks.34.mlp.fc2.bias", "blocks.34.default_modulation.1.weight", "blocks.34.default_modulation.1.bias", "blocks.34.attn2.q_proj.weight", "blocks.34.attn2.q_proj.bias", "blocks.34.attn2.kv_proj.weight", "blocks.34.attn2.kv_proj.bias", "blocks.34.attn2.q_norm.weight", "blocks.34.attn2.q_norm.bias", "blocks.34.attn2.k_norm.weight", "blocks.34.attn2.k_norm.bias", "blocks.34.attn2.out_proj.weight", "blocks.34.attn2.out_proj.bias", "blocks.34.norm3.weight", "blocks.34.norm3.bias", "blocks.34.skip_norm.weight", "blocks.34.skip_norm.bias", "blocks.34.skip_linear.weight", "blocks.34.skip_linear.bias", "blocks.35.norm1.weight", "blocks.35.norm1.bias", "blocks.35.attn1.Wqkv.weight", "blocks.35.attn1.Wqkv.bias", "blocks.35.attn1.q_norm.weight", "blocks.35.attn1.q_norm.bias", "blocks.35.attn1.k_norm.weight", "blocks.35.attn1.k_norm.bias", "blocks.35.attn1.out_proj.weight", "blocks.35.attn1.out_proj.bias", "blocks.35.norm2.weight", "blocks.35.norm2.bias", "blocks.35.mlp.fc1.weight", "blocks.35.mlp.fc1.bias", "blocks.35.mlp.fc2.weight", "blocks.35.mlp.fc2.bias", "blocks.35.default_modulation.1.weight", "blocks.35.default_modulation.1.bias", "blocks.35.attn2.q_proj.weight", "blocks.35.attn2.q_proj.bias", "blocks.35.attn2.kv_proj.weight", "blocks.35.attn2.kv_proj.bias", "blocks.35.attn2.q_norm.weight", "blocks.35.attn2.q_norm.bias", "blocks.35.attn2.k_norm.weight", "blocks.35.attn2.k_norm.bias", "blocks.35.attn2.out_proj.weight", "blocks.35.attn2.out_proj.bias", "blocks.35.norm3.weight", "blocks.35.norm3.bias", "blocks.35.skip_norm.weight", "blocks.35.skip_norm.bias", "blocks.35.skip_linear.weight", "blocks.35.skip_linear.bias", "blocks.36.norm1.weight", "blocks.36.norm1.bias", "blocks.36.attn1.Wqkv.weight", "blocks.36.attn1.Wqkv.bias", "blocks.36.attn1.q_norm.weight", "blocks.36.attn1.q_norm.bias", "blocks.36.attn1.k_norm.weight", "blocks.36.attn1.k_norm.bias", "blocks.36.attn1.out_proj.weight", "blocks.36.attn1.out_proj.bias", "blocks.36.norm2.weight", "blocks.36.norm2.bias", "blocks.36.mlp.fc1.weight", "blocks.36.mlp.fc1.bias", "blocks.36.mlp.fc2.weight", "blocks.36.mlp.fc2.bias", "blocks.36.default_modulation.1.weight", "blocks.36.default_modulation.1.bias", "blocks.36.attn2.q_proj.weight", "blocks.36.attn2.q_proj.bias", "blocks.36.attn2.kv_proj.weight", "blocks.36.attn2.kv_proj.bias", "blocks.36.attn2.q_norm.weight", "blocks.36.attn2.q_norm.bias", "blocks.36.attn2.k_norm.weight", "blocks.36.attn2.k_norm.bias", "blocks.36.attn2.out_proj.weight", "blocks.36.attn2.out_proj.bias", "blocks.36.norm3.weight", "blocks.36.norm3.bias", "blocks.36.skip_norm.weight", "blocks.36.skip_norm.bias", "blocks.36.skip_linear.weight", "blocks.36.skip_linear.bias", "blocks.37.norm1.weight", "blocks.37.norm1.bias", "blocks.37.attn1.Wqkv.weight", "blocks.37.attn1.Wqkv.bias", "blocks.37.attn1.q_norm.weight", "blocks.37.attn1.q_norm.bias", "blocks.37.attn1.k_norm.weight", "blocks.37.attn1.k_norm.bias", "blocks.37.attn1.out_proj.weight", "blocks.37.attn1.out_proj.bias", "blocks.37.norm2.weight", "blocks.37.norm2.bias", "blocks.37.mlp.fc1.weight", "blocks.37.mlp.fc1.bias", "blocks.37.mlp.fc2.weight", "blocks.37.mlp.fc2.bias", "blocks.37.default_modulation.1.weight", "blocks.37.default_modulation.1.bias", "blocks.37.attn2.q_proj.weight", "blocks.37.attn2.q_proj.bias", "blocks.37.attn2.kv_proj.weight", "blocks.37.attn2.kv_proj.bias", "blocks.37.attn2.q_norm.weight", "blocks.37.attn2.q_norm.bias", "blocks.37.attn2.k_norm.weight", "blocks.37.attn2.k_norm.bias", "blocks.37.attn2.out_proj.weight", "blocks.37.attn2.out_proj.bias", "blocks.37.norm3.weight", "blocks.37.norm3.bias", "blocks.37.skip_norm.weight", "blocks.37.skip_norm.bias", "blocks.37.skip_linear.weight", "blocks.37.skip_linear.bias", "blocks.38.norm1.weight", "blocks.38.norm1.bias", "blocks.38.attn1.Wqkv.weight", "blocks.38.attn1.Wqkv.bias", "blocks.38.attn1.q_norm.weight", "blocks.38.attn1.q_norm.bias", "blocks.38.attn1.k_norm.weight", "blocks.38.attn1.k_norm.bias", "blocks.38.attn1.out_proj.weight", "blocks.38.attn1.out_proj.bias", "blocks.38.norm2.weight", "blocks.38.norm2.bias", "blocks.38.mlp.fc1.weight", "blocks.38.mlp.fc1.bias", "blocks.38.mlp.fc2.weight", "blocks.38.mlp.fc2.bias", "blocks.38.default_modulation.1.weight", "blocks.38.default_modulation.1.bias", "blocks.38.attn2.q_proj.weight", "blocks.38.attn2.q_proj.bias", "blocks.38.attn2.kv_proj.weight", "blocks.38.attn2.kv_proj.bias", "blocks.38.attn2.q_norm.weight", "blocks.38.attn2.q_norm.bias", "blocks.38.attn2.k_norm.weight", "blocks.38.attn2.k_norm.bias", "blocks.38.attn2.out_proj.weight", "blocks.38.attn2.out_proj.bias", "blocks.38.norm3.weight", "blocks.38.norm3.bias", "blocks.38.skip_norm.weight", "blocks.38.skip_norm.bias", "blocks.38.skip_linear.weight", "blocks.38.skip_linear.bias", "blocks.39.norm1.weight", "blocks.39.norm1.bias", "blocks.39.attn1.Wqkv.weight", "blocks.39.attn1.Wqkv.bias", "blocks.39.attn1.q_norm.weight", "blocks.39.attn1.q_norm.bias", "blocks.39.attn1.k_norm.weight", "blocks.39.attn1.k_norm.bias", "blocks.39.attn1.out_proj.weight", "blocks.39.attn1.out_proj.bias", "blocks.39.norm2.weight", "blocks.39.norm2.bias", "blocks.39.mlp.fc1.weight", "blocks.39.mlp.fc1.bias", "blocks.39.mlp.fc2.weight", "blocks.39.mlp.fc2.bias", "blocks.39.default_modulation.1.weight", "blocks.39.default_modulation.1.bias", "blocks.39.attn2.q_proj.weight", "blocks.39.attn2.q_proj.bias", "blocks.39.attn2.kv_proj.weight", "blocks.39.attn2.kv_proj.bias", "blocks.39.attn2.q_norm.weight", "blocks.39.attn2.q_norm.bias", "blocks.39.attn2.k_norm.weight", "blocks.39.attn2.k_norm.bias", "blocks.39.attn2.out_proj.weight", "blocks.39.attn2.out_proj.bias", "blocks.39.norm3.weight", "blocks.39.norm3.bias", "blocks.39.skip_norm.weight", "blocks.39.skip_norm.bias", "blocks.39.skip_linear.weight", "blocks.39.skip_linear.bias".
size mismatch for x_embedder.proj.weight: copying a param with shape torch.Size([1408, 4, 2, 2]) from checkpoint, the shape in current model is torch.Size([1152, 4, 2, 2]).
size mismatch for x_embedder.proj.bias: copying a param with shape torch.Size([1408]) from checkpoint, the shape in current model is torch.Size([1152]).
size mismatch for t_embedder.mlp.0.weight: copying a param with shape torch.Size([1408, 256]) from checkpoint, the shape in current model is torch.Size([1152, 256]).
size mismatch for t_embedder.mlp.0.bias: copying a param with shape torch.Size([1408]) from checkpoint, the shape in current model is torch.Size([1152]).
size mismatch for t_embedder.mlp.2.weight: copying a param with shape torch.Size([1408, 1408]) from checkpoint, the shape in current model is torch.Size([1152, 1152]).
size mismatch for t_embedder.mlp.2.bias: copying a param with shape torch.Size([1408]) from checkpoint, the shape in current model is torch.Size([1152]).
size mismatch for extra_embedder.0.weight: copying a param with shape torch.Size([5632, 1024]) from checkpoint, the shape in current model is torch.Size([4608, 1024]).
2 模型结构列表:
tree ckpts
ckpts
├── asset
│ ├── chinese elements understanding.png
│ ├── cover.png
│ ├── framework.png
│ ├── Hunyuan_DiT_Tech_Report_05140553.pdf
│ ├── logo.png
│ ├── long text understanding.png
│ ├── mllm.png
│ └── radar.png
├── configuration.json
├── dialoggen
│ ├── config.json
│ ├── generation_config.json
│ ├── model-00001-of-00004.safetensors
│ ├── model-00002-of-00004.safetensors
│ ├── model-00003-of-00004.safetensors
│ ├── model-00004-of-00004.safetensors
│ ├── model.safetensors.index.json
│ ├── openai
│ │ └── clip-vit-large-patch14-336
│ │ ├── config.json
│ │ ├── merges.txt
│ │ ├── preprocessor_config.json
│ │ ├── pytorch_model.bin
│ │ ├── README.md
│ │ ├── special_tokens_map.json
│ │ ├── tf_model.h5
│ │ ├── tokenizer_config.json
│ │ ├── tokenizer.json
│ │ └── vocab.json
│ ├── special_tokens_map.json
│ ├── tokenizer_config.json
│ └── tokenizer.model
├── LICENSE
├── LICENSE.txt
├── Notice
├── README.md
└── t2i
├── clip_text_encoder
│ ├── config.json
│ └── pytorch_model.bin
├── model
│ ├── pytorch_model_ema.pt
│ └── pytorch_model_module.pt
├── mt5
│ ├── config.json
│ ├── generation_config.json
│ ├── pytorch_model.bin
│ ├── README.md
│ ├── special_tokens_map.json
│ ├── spiece.model
│ └── tokenizer_config.json
├── sdxl-vae-fp16-fix
│ ├── config.json
│ ├── diffusion_pytorch_model.bin
│ └── diffusion_pytorch_model.safetensors
└── tokenizer
├── special_tokens_map.json
├── tokenizer_config.json
├── vocab_org.txt
└── vocab.txt
10 directories, 51 files
完整报错信息见附件。