Skip to content

Commit 9c97820

Browse files
committed
Add euler project problem 142 solution.
1 parent 0c8cf8e commit 9c97820

File tree

2 files changed

+80
-0
lines changed

2 files changed

+80
-0
lines changed

project_euler/problem_142/__init__.py

Whitespace-only changes.

project_euler/problem_142/sol1.py

+80
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,80 @@
1+
"""
2+
Project Euler Problem 142: https://projecteuler.net/problem=142
3+
4+
Perfect Square Collection
5+
6+
Find the smallest x + y + z with integers x > y > z > 0 such that
7+
x + y, x - y, x + z, x - z, y + z, y - z are all perfect squares.
8+
9+
10+
Change the variables to a, b, c, so that 3 requirements are satisfied automatically:
11+
a^2 = y - z
12+
b^2 = x - y
13+
c^2 = z + x
14+
15+
and the rest of requirements for perfect squares are:
16+
z + y = c^2 - b^2
17+
y + x = a^2 + c^2
18+
x - z = a^2 + b^2
19+
20+
Then iterate over a^2, b^2 and c^2 to check if the combination satisfies all
21+
3 requirements.
22+
23+
The total sum x + y + z = (a^2 - b^2 + 3c^2) / 2, so we break loop for c^2 if
24+
the sum is already bigger than found sum.
25+
26+
"""
27+
28+
29+
def solution(number_of_terms: int = 3) -> int | None:
30+
"""
31+
32+
Iterate over combinations of a, b, c and save min sum.
33+
In case only one term x = 1 is solution.
34+
In case of two terms, x = 5, y = 4 is the solution.
35+
36+
>>> solution(1)
37+
1
38+
>>> solution(2)
39+
9
40+
"""
41+
42+
if number_of_terms == 1:
43+
return 1
44+
if number_of_terms == 2:
45+
return 9
46+
47+
n_max = 2500
48+
squares: list[int] = []
49+
50+
for a in range(n_max + 1):
51+
squares += [a * a]
52+
squares_set = set(squares)
53+
54+
min_sum = None
55+
for a in range(1, len(squares)):
56+
a_sq = squares[a]
57+
for b in range(1, len(squares)):
58+
b_sq = squares[b]
59+
if a_sq + b_sq not in squares_set:
60+
continue
61+
for c in range(max(a, b) + 1, len(squares)):
62+
c_sq = squares[c]
63+
# break if x + y + z is already bigger than min_sum:
64+
if min_sum is not None and (a_sq - b_sq + 3 * c_sq) // 2 > min_sum:
65+
break
66+
if (c_sq - b_sq in squares_set) and (a_sq + c_sq in squares_set):
67+
x2, y2, z2 = (
68+
a_sq + b_sq + c_sq,
69+
a_sq - b_sq + c_sq,
70+
c_sq - a_sq - b_sq,
71+
)
72+
if z2 > 0 and x2 % 2 == 0 and y2 % 2 == 0 and z2 % 2 == 0:
73+
sum_ = (x2 + y2 + z2) // 2
74+
min_sum = sum_ if min_sum is None else min(min_sum, sum_)
75+
76+
return min_sum
77+
78+
79+
if __name__ == "__main__":
80+
print(f"{solution() = }")

0 commit comments

Comments
 (0)