|
| 1 | +//! # Gas Station Problem |
| 2 | +//! |
| 3 | +//! ## Problem Statement |
| 4 | +//! |
| 5 | +//! There are n gas stations along a circular route, where the amount of gas |
| 6 | +//! at the ith station is `gas[i]`. You have a car with an unlimited gas tank |
| 7 | +//! and it costs `cost[i]` of gas to travel from the ith station to its next |
| 8 | +//! (i + 1)th station. You begin the journey with an empty tank at one of the |
| 9 | +//! gas stations. |
| 10 | +//! |
| 11 | +//! Given two integer arrays `gas` and `cost`, return the starting gas station's |
| 12 | +//! index if you can travel around the circuit once in the clockwise direction; |
| 13 | +//! otherwise, return -1. If there exists a solution, it is guaranteed to be unique. |
| 14 | +//! |
| 15 | +//! ## Algorithm |
| 16 | +//! |
| 17 | +//! The solution uses a greedy approach: |
| 18 | +//! 1. First, check whether the total gas is enough to complete the journey. |
| 19 | +//! If the sum of all gas is less than the sum of all costs, return -1. |
| 20 | +//! 2. If there is enough gas total, there must be a valid starting index. |
| 21 | +//! 3. Greedily calculate the net gain (gas - cost) at each station. |
| 22 | +//! 4. If the net gain ever goes below 0 while iterating through the stations, |
| 23 | +//! the current starting point is invalid. Start checking from the next station. |
| 24 | +//! |
| 25 | +//! ## Complexity |
| 26 | +//! |
| 27 | +//! - Time complexity: O(n) where n is the number of gas stations |
| 28 | +//! - Space complexity: O(1) |
| 29 | +//! |
| 30 | +//! ## References |
| 31 | +//! |
| 32 | +//! - [LeetCode Problem](https://leetcode.com/problems/gas-station/) |
| 33 | +
|
| 34 | +/// Represents a gas station with available gas and cost to travel to the next station |
| 35 | +#[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 36 | +pub struct GasStation { |
| 37 | + /// Amount of gas available at this station |
| 38 | + pub gas: i32, |
| 39 | + /// Cost of gas required to travel to the next station |
| 40 | + pub cost: i32, |
| 41 | +} |
| 42 | + |
| 43 | +impl GasStation { |
| 44 | + /// Creates a new gas station |
| 45 | + /// |
| 46 | + /// # Arguments |
| 47 | + /// |
| 48 | + /// * `gas` - Amount of gas available at this station |
| 49 | + /// * `cost` - Cost to travel to the next station |
| 50 | + /// |
| 51 | + /// # Examples |
| 52 | + /// |
| 53 | + /// ``` |
| 54 | + /// use the_algorithms_rust::greedy::GasStation; |
| 55 | + /// let station = GasStation::new(5, 3); |
| 56 | + /// assert_eq!(station.gas, 5); |
| 57 | + /// assert_eq!(station.cost, 3); |
| 58 | + /// ``` |
| 59 | + pub fn new(gas: i32, cost: i32) -> Self { |
| 60 | + Self { gas, cost } |
| 61 | + } |
| 62 | + |
| 63 | + /// Returns the net gain (gas - cost) for this station |
| 64 | + /// |
| 65 | + /// # Examples |
| 66 | + /// |
| 67 | + /// ``` |
| 68 | + /// use the_algorithms_rust::greedy::GasStation; |
| 69 | + /// let station = GasStation::new(5, 3); |
| 70 | + /// assert_eq!(station.net_gain(), 2); |
| 71 | + /// ``` |
| 72 | + pub fn net_gain(&self) -> i32 { |
| 73 | + self.gas - self.cost |
| 74 | + } |
| 75 | +} |
| 76 | + |
| 77 | +/// Creates a vector of gas stations from parallel arrays of gas quantities and costs |
| 78 | +/// |
| 79 | +/// # Arguments |
| 80 | +/// |
| 81 | +/// * `gas` - Array of gas quantities at each station |
| 82 | +/// * `cost` - Array of costs to travel to the next station |
| 83 | +/// |
| 84 | +/// # Panics |
| 85 | +/// |
| 86 | +/// Panics if the lengths of `gas` and `cost` arrays don't match |
| 87 | +/// |
| 88 | +/// # Examples |
| 89 | +/// |
| 90 | +/// ``` |
| 91 | +/// use the_algorithms_rust::greedy::{create_gas_stations, GasStation}; |
| 92 | +/// let stations = create_gas_stations(&[1, 2, 3, 4, 5], &[3, 4, 5, 1, 2]); |
| 93 | +/// assert_eq!(stations.len(), 5); |
| 94 | +/// assert_eq!(stations[0], GasStation::new(1, 3)); |
| 95 | +/// assert_eq!(stations[4], GasStation::new(5, 2)); |
| 96 | +/// ``` |
| 97 | +pub fn create_gas_stations(gas: &[i32], cost: &[i32]) -> Vec<GasStation> { |
| 98 | + assert_eq!( |
| 99 | + gas.len(), |
| 100 | + cost.len(), |
| 101 | + "gas and cost arrays must have the same length" |
| 102 | + ); |
| 103 | + gas.iter() |
| 104 | + .zip(cost.iter()) |
| 105 | + .map(|(&g, &c)| GasStation::new(g, c)) |
| 106 | + .collect() |
| 107 | +} |
| 108 | + |
| 109 | +/// Finds the starting gas station index to complete the circular journey |
| 110 | +/// |
| 111 | +/// Returns the index of the gas station from which to start the journey |
| 112 | +/// in order to complete a full circuit. Returns -1 if it's impossible to |
| 113 | +/// complete the journey. |
| 114 | +/// |
| 115 | +/// # Arguments |
| 116 | +/// |
| 117 | +/// * `stations` - Slice of gas stations along the circular route |
| 118 | +/// |
| 119 | +/// # Returns |
| 120 | +/// |
| 121 | +/// * Index of the starting station (0-indexed) if a solution exists |
| 122 | +/// * -1 if no solution exists |
| 123 | +/// |
| 124 | +/// # Examples |
| 125 | +/// |
| 126 | +/// ``` |
| 127 | +/// use the_algorithms_rust::greedy::{can_complete_journey, create_gas_stations}; |
| 128 | +/// // Case 1: Solution exists starting at index 3 |
| 129 | +/// let stations = create_gas_stations(&[1, 2, 3, 4, 5], &[3, 4, 5, 1, 2]); |
| 130 | +/// assert_eq!(can_complete_journey(&stations), 3); |
| 131 | +/// |
| 132 | +/// // Case 2: No solution exists |
| 133 | +/// let stations = create_gas_stations(&[2, 3, 4], &[3, 4, 3]); |
| 134 | +/// assert_eq!(can_complete_journey(&stations), -1); |
| 135 | +/// |
| 136 | +/// // Case 3: Start at index 0 |
| 137 | +/// let stations = create_gas_stations(&[5, 1, 2, 3, 4], &[4, 4, 1, 5, 1]); |
| 138 | +/// assert_eq!(can_complete_journey(&stations), 4); |
| 139 | +/// ``` |
| 140 | +pub fn can_complete_journey(stations: &[GasStation]) -> i32 { |
| 141 | + // Calculate total gas and total cost |
| 142 | + let total_gas: i32 = stations.iter().map(|s| s.gas).sum(); |
| 143 | + let total_cost: i32 = stations.iter().map(|s| s.cost).sum(); |
| 144 | + |
| 145 | + // If total gas is less than total cost, impossible to complete journey |
| 146 | + if total_gas < total_cost { |
| 147 | + return -1; |
| 148 | + } |
| 149 | + |
| 150 | + // Since we have enough gas, a solution must exist |
| 151 | + // Use greedy approach to find the starting station |
| 152 | + let mut start = 0; |
| 153 | + let mut net = 0; |
| 154 | + |
| 155 | + for (i, station) in stations.iter().enumerate() { |
| 156 | + net += station.net_gain(); |
| 157 | + |
| 158 | + // If net becomes negative, we can't reach here from current start |
| 159 | + // So try starting from the next station |
| 160 | + if net < 0 { |
| 161 | + start = i + 1; |
| 162 | + net = 0; |
| 163 | + } |
| 164 | + } |
| 165 | + |
| 166 | + start as i32 |
| 167 | +} |
| 168 | + |
| 169 | +#[cfg(test)] |
| 170 | +mod tests { |
| 171 | + use super::*; |
| 172 | + |
| 173 | + #[test] |
| 174 | + fn test_gas_station_creation() { |
| 175 | + let station = GasStation::new(10, 5); |
| 176 | + assert_eq!(station.gas, 10); |
| 177 | + assert_eq!(station.cost, 5); |
| 178 | + assert_eq!(station.net_gain(), 5); |
| 179 | + } |
| 180 | + |
| 181 | + #[test] |
| 182 | + fn test_create_gas_stations() { |
| 183 | + let stations = create_gas_stations(&[1, 2, 3], &[2, 1, 3]); |
| 184 | + assert_eq!(stations.len(), 3); |
| 185 | + assert_eq!(stations[0], GasStation::new(1, 2)); |
| 186 | + assert_eq!(stations[1], GasStation::new(2, 1)); |
| 187 | + assert_eq!(stations[2], GasStation::new(3, 3)); |
| 188 | + } |
| 189 | + |
| 190 | + #[test] |
| 191 | + #[should_panic(expected = "gas and cost arrays must have the same length")] |
| 192 | + fn test_create_gas_stations_mismatched_lengths() { |
| 193 | + create_gas_stations(&[1, 2], &[1]); |
| 194 | + } |
| 195 | + |
| 196 | + #[test] |
| 197 | + fn test_can_complete_journey_solution_exists() { |
| 198 | + let stations = create_gas_stations(&[1, 2, 3, 4, 5], &[3, 4, 5, 1, 2]); |
| 199 | + assert_eq!(can_complete_journey(&stations), 3); |
| 200 | + } |
| 201 | + |
| 202 | + #[test] |
| 203 | + fn test_can_complete_journey_no_solution() { |
| 204 | + let stations = create_gas_stations(&[2, 3, 4], &[3, 4, 3]); |
| 205 | + assert_eq!(can_complete_journey(&stations), -1); |
| 206 | + } |
| 207 | + |
| 208 | + #[test] |
| 209 | + fn test_can_complete_journey_start_at_zero() { |
| 210 | + let stations = create_gas_stations(&[3, 1, 1], &[1, 2, 2]); |
| 211 | + assert_eq!(can_complete_journey(&stations), 0); |
| 212 | + } |
| 213 | + |
| 214 | + #[test] |
| 215 | + fn test_can_complete_journey_single_station() { |
| 216 | + let stations = create_gas_stations(&[5], &[3]); |
| 217 | + assert_eq!(can_complete_journey(&stations), 0); |
| 218 | + } |
| 219 | + |
| 220 | + #[test] |
| 221 | + fn test_can_complete_journey_single_station_insufficient() { |
| 222 | + let stations = create_gas_stations(&[2], &[3]); |
| 223 | + assert_eq!(can_complete_journey(&stations), -1); |
| 224 | + } |
| 225 | + |
| 226 | + #[test] |
| 227 | + fn test_can_complete_journey_two_stations() { |
| 228 | + let stations = create_gas_stations(&[1, 2], &[2, 1]); |
| 229 | + assert_eq!(can_complete_journey(&stations), 1); |
| 230 | + } |
| 231 | + |
| 232 | + #[test] |
| 233 | + fn test_can_complete_journey_all_equal() { |
| 234 | + let stations = create_gas_stations(&[2, 2, 2, 2], &[2, 2, 2, 2]); |
| 235 | + assert_eq!(can_complete_journey(&stations), 0); |
| 236 | + } |
| 237 | + |
| 238 | + #[test] |
| 239 | + fn test_can_complete_journey_large_numbers() { |
| 240 | + let stations = create_gas_stations(&[1000, 500, 300], &[600, 400, 300]); |
| 241 | + assert_eq!(can_complete_journey(&stations), 0); |
| 242 | + } |
| 243 | + |
| 244 | + #[test] |
| 245 | + fn test_can_complete_journey_negative_net_at_start() { |
| 246 | + let stations = create_gas_stations(&[1, 5, 3], &[3, 2, 4]); |
| 247 | + assert_eq!(can_complete_journey(&stations), 1); |
| 248 | + } |
| 249 | +} |
0 commit comments