-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
204 lines (191 loc) · 8.86 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 10 14:03:46 2021
@author: marcus,wendy,kelly,elaine
"""
import house
import school
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from pmdarima.arima import auto_arima
import os
import re
import math
import random
path = os.getcwd()
online_scrap = False
search_query = '15232'
def recall(search_query, online_scrap):
res = {}
zip_codes = ['15213', '15232', '15217', '15219', '15222', '19104', '19103', '19122', '19134', '19148']
if (online_scrap == True) | (search_query not in zip_codes):
try:
# 此处调用三个爬虫函数
house.gosearch(search_query, 'houses.csv', 'w')
school.school_search(search_query)
except Exception:
print('Sorry, no data found!')
res['info'] = 'Sorry, an error occured when scraping the data!'
return res
if online_scrap == True:
schools = pd.read_csv(path + '/schools.csv')
else:
schools = pd.read_csv(path + '/schools_demo.csv')
schools = schools[schools['Zip Code'] == int(search_query)].reset_index()
if online_scrap == True:
houses = pd.read_csv(path + '/houses.csv')
else:
houses = pd.read_csv(path + '/houses_demo.csv')
houses = houses[houses['Zip Code'] == int(search_query)].reset_index()
races = pd.read_csv(path + '/races.csv')
if online_scrap == True:
races = races[races['Zip Code'] == random.randint(10000, 10064)].reset_index()
else:
races = races[races['Zip Code'] == int(search_query)].reset_index()
price_ts = pd.read_csv(path + "/price time series.csv")
price_ts = price_ts.loc[price_ts['Zip Code'] == int(search_query)].reset_index()
if len(price_ts) == 0:
price_ts = pd.read_csv(path + "/price time series.csv")
price_ts = price_ts.loc[price_ts['Zip Code'] == 77777].reset_index()
res['info'] = 'Search completed!'
# Analyzing School Data
if (len(schools) == 0):
res['schoolinfo'] = 'No school found in this area.'
school_score = 0.0
else:
n = len(schools)
schools['Score'] = [0.0] * n
# Calculate school score
for i in range(0, n):
proficiency = (float(schools['Math Proficiency'][i]) + float(schools['Reading Proficiency'][i])) / 2
distance = 100.0 - (float(schools['Distance'][i]) / 5.0 * 100)
schools['Score'][i] = proficiency * 0.8 + distance * 0.2
# Calculate overall score
school_score = schools['Score'].mean()
# Sort by score
schools.sort_values(by = ['Score'], ascending = False, na_position='last', inplace = True)
schools.to_csv(path + '/result_school.csv', index = None)
res['schoolinfo'] = 'Found ' + str(n) + ' school results, sorted by SCORE:'
# if n <= 10:
# res['school'] = schools.to_string() + '\nRefer to result_school.csv for full result.'
# else:
# res['school'] = schools.iloc[[0, 10], :].to_string() + '\n......\nand' + str(n-10) + 'more results.' + '\nRefer to result_school.csv for full result.'
# Analyzing House Data
if (len(houses) == 0):
res['houseinfo'] = 'No house found in this area.'
houses_score = 0.0
else:
n = len(houses)
houses['Score'] = [0.0] * n
# Calculate house score
for i in range(0, n):
if math.isnan(houses['# Bedrooms'][i]) | math.isnan(houses['# Bathrooms'][i]) | math.isnan(houses['Area in sqft'][i]):
houses['Score'][i] = 0.0
else:
price_index = 10000.0 / (float(houses['House Price'][i]) / float(houses['Area in sqft'][i]))
room_index = (float(houses['# Bedrooms'][i]) + float(houses['# Bathrooms'][i])) / 10
houses['Score'][i] = min(100.0, price_index + (100 - price_index) * room_index)
# Calculate overall score
houses_score = houses['Score'].mean()
# Sort by score
houses.sort_values(by = ['Score'], ascending = False, na_position='last', inplace = True)
houses.to_csv(path + '/result_house.csv', index = None)
res['houseinfo'] = 'Found ' + str(n) + ' house results, sorted by SCORE:'
# if n <= 10:
# res['house'] = schools.to_string() + '\nRefer to result_house.csv for full result.'
# else:
# res['house'] = schools.iloc[[0, 10], :].to_string() + '\n......\nand' + str(n-10) + 'more results.' + '\nRefer to result_house.csv for full result.'
# Analyzing Race Data
if (len(races) == 0):
res['raceinfo'] = 'No race information found in this area.'
race_score = 50
else:
res['raceinfo'] = 'Race distribution can be concluded below:\n'
# Generate race distribution pie chart
plt.rcParams['font.sans-serif']=['SimHei']
plt.figure(figsize=(7.5,5),dpi=80)
labels = races.columns.values.tolist()[3:]
sizes = races.values.tolist()[0][3:]
colors = ['red','yellowgreen','lightskyblue','yellow','purple','pink','peachpuff','orange']
explode = [0.01] * (races.shape[1] - 2)
plt.figure(figsize=(18,7))
patches,text1,text2 = plt.pie(sizes,
#explode=explode,
labels=labels,
colors=colors,
radius=10,
labeldistance = 1.2,
autopct = '%d%%',
shadow = False,
startangle =90,
pctdistance = 0.6)
plt.axis('equal')
plt.legend(loc = 4)
plt.title("Race Distribution in" + search_query)
plt.savefig('./race_result.jpg')
res['race'] = 'race_result.jpg'
plt.show()
# Calculate overall race score
race_mean = np.mean(sizes)
race_std = np.std(sizes, ddof = 1)
race_score = max(0.0, (1 - race_std / race_mean) * 100)
# Analyzing House Prize Time Series
months = price_ts.columns.values.tolist()[6:]
price_ts = price_ts.iloc[:, 6:].T
price_ts.columns = ['price']
price_ts['month'] = months
price_ts['month'] = pd.to_datetime(price_ts['month'])
price_ts.set_index('month', inplace=True)
model = auto_arima(price_ts, trace = True, error_action = 'ignore', suppress_warnings = True)
model.fit(price_ts)
forecast = model.predict(n_periods = 6)
forecast = pd.DataFrame(forecast, columns = ['price'])
forecast['month'] = ['2021-09-30', '2021-10-30', '2021-11-30', '2021-12-31', '2022-01-31', '2022-02-28']
forecast['month'] = pd.to_datetime(forecast['month'])
forecast.set_index('month', inplace=True)
fig = plt.figure()
fig.add_subplot()
#fig.set_title(search_query + 'house price forecast for the next 6 months')
plt.plot(price_ts, 'b-', label = 'Real Data')
plt.plot(forecast, 'r-', label = 'Forecast Data')
plt.legend(loc = 'best')
plt.title(search_query + ' house price forecast for the next 6 months')
plt.savefig('./time_series.jpg')
plt.show(block = False)
res['tsplot'] = 'time_series.jpg'
res['ts_summary'] = 'Forcast average price for the next 6 months: \n'\
+ str(forecast.iloc[0, 0])[0:9] + ' ' \
+ str(forecast.iloc[1, 0])[0:9] + ' ' \
+ str(forecast.iloc[2, 0])[0:9] + ' ' \
+ str(forecast.iloc[3, 0])[0:9] + ' ' \
+ str(forecast.iloc[4, 0])[0:9] + ' ' \
+ str(forecast.iloc[5, 0])[0:9] \
+ '\nThe estimated annualized rate of return is '\
+ str((pow((forecast.iloc[5, 0] / forecast.iloc[0, 0]), 2) - 1) * 100)[0:5] + '%'
# Generalize summary string
summary = ''
summary += 'Search completed!\n\n'
summary += res['schoolinfo'] + '\n\n'
summary += res['houseinfo'] + '\n\n'
summary += 'Race distribution can be found in the race page\n\n'
summary += res['ts_summary'] + '\n\n'
summary += 'The school quality score of ' + search_query + ' is ' + str(format(school_score, '.2f')) + ' out of 100\n'
summary += 'The house quality score of ' + search_query + ' is ' + str(format(houses_score, '.2f')) + ' out of 100\n\n'
if (school_score < 60.0) | (houses_score < 60.0) | ((forecast.iloc[5, 0] / forecast.iloc[0, 0]) < 1.0):
summary += 'In summary, it is not a good place for your children to study, as well as for you to live!'
else :
summary += 'In summary, it is an ideal place for your children to study, as well as for you to live!'
res['summary'] = summary
return res
if __name__ == '__main__':
#res = recall('15206', True)
#print(res.get('info'))
# print(res['schoolinfo'])
# print(res['houseinfo'])
# print(res['raceinfo'])
# print(res['race'])
# print(res['tsplot'])
# print(res['ts_summary'])
print(res['summary'])