16
16
import static de .tilman_neumann .jml .base .BigIntConstants .*;
17
17
18
18
import java .math .BigInteger ;
19
- import java .security .SecureRandom ;
20
- import java .util .ArrayList ;
21
19
22
20
import org .apache .logging .log4j .Logger ;
23
21
import org .apache .logging .log4j .LogManager ;
24
22
25
23
import de .tilman_neumann .jml .base .BigIntConverter ;
26
- import de .tilman_neumann .util .ConfigUtil ;
27
24
28
25
/**
29
26
* Fast sqrt() computation with integer solutions using Herons (or "Babylonian") method
33
30
*/
34
31
public class SqrtInt {
35
32
private static final Logger LOG = LogManager .getLogger (SqrtInt .class );
36
- private static final SecureRandom RNG = new SecureRandom () ;
33
+ private static final boolean DEBUG = false ;
37
34
38
35
/**
39
36
* sqrt() computation with integer solutions using Herons (or "Babylonian") method
@@ -57,20 +54,20 @@ public class SqrtInt {
57
54
if ((shiftsRight & 1 ) == 1 ) shiftsRight ++; // make even -> n looses 1 bit of precision
58
55
double sqrt = Math .sqrt (N .shiftRight (shiftsRight ).doubleValue ());
59
56
BigInteger initialGuess = BigIntConverter .fromDoubleMulPow2 (sqrt , shiftsRight >>1 );
60
- // LOG.debug(i + ".th root (" + N + "): initialGuess = " + initialGuess);
57
+ if ( DEBUG ) LOG .debug ("sqrt (" + N + "): initialGuess = " + initialGuess );
61
58
return iSqrt (N , initialGuess );
62
59
} else if (bits >= 127 ) {
63
60
// N has 127..1023 bits -> the argument fits into double, no shifts required.
64
61
// the result has 64..511 bits which means some Heron steps are required.
65
62
BigInteger initialGuess = BigIntConverter .fromDouble (Math .sqrt (N .doubleValue ()));
66
- // LOG.debug(i + ".th root (" + N + "): initialGuess = " + initialGuess);
63
+ if ( DEBUG ) LOG .debug ("sqrt (" + N + "): initialGuess = " + initialGuess );
67
64
return iSqrt (N , initialGuess );
68
65
} else if (bits >= 107 ) {
69
66
// N has 107..126 bits -> too big to get around without Heron steps, but small enough to let
70
67
// the resulting sqrt fit into long -> BigInteger construction is faster.
71
68
// N with 127 bits should fit here too, but showed very bad performance.
72
69
BigInteger initialGuess = BigInteger .valueOf ( (long ) Math .sqrt (N .doubleValue ()));
73
- // LOG.debug(i + ".th root (" + N + "): initialGuess = " + initialGuess);
70
+ if ( DEBUG ) LOG .debug ("sqrt (" + N + "): initialGuess = " + initialGuess );
74
71
return iSqrt (N , initialGuess );
75
72
} else if (bits >= 64 ) {
76
73
// N has 64...106 bits -> the resulting sqrt has a size of 32...53 bits and 52 bits (double) precision.
@@ -108,85 +105,18 @@ public class SqrtInt {
108
105
public static BigInteger [] iSqrt (BigInteger n , BigInteger guess ) {
109
106
// do one approximation step before first convergence check
110
107
guess = n .divide (guess ).add (guess ).shiftRight (1 );
111
- // LOG.debug("initial guess: sqrt(" + n + ") ~ " + guess);
108
+ if ( DEBUG ) LOG .debug ("initial guess: sqrt(" + n + ") ~ " + guess );
112
109
113
110
BigInteger lastGuess ;
114
111
do {
115
112
lastGuess = guess ;
116
113
guess = n .divide (guess ).add (guess ).shiftRight (1 );
117
- // LOG.debug("next guess: sqrt(" + n + ") ~ " + guess);
114
+ if ( DEBUG ) LOG .debug ("next guess: sqrt(" + n + ") ~ " + guess );
118
115
} while (guess .subtract (lastGuess ).abs ().bitLength ()>1 ); // while absolute difference > 1
119
116
120
117
int cmp = guess .multiply (guess ).compareTo (n );
121
118
if (cmp < 0 ) return new BigInteger [] {guess , guess .add (I_1 )};
122
119
if (cmp > 0 ) return new BigInteger [] {guess .subtract (I_1 ), guess };
123
120
return new BigInteger [] {guess , guess }; // exact sqrt()
124
121
}
125
-
126
- // test -----------------------------------------------------------
127
-
128
- /**
129
- * create test set for performance test: random ints with random bit length < 1000
130
- * @param nCount
131
- * @return
132
- */
133
- private static ArrayList <BigInteger > createTestSet (int nCount , int bits ) {
134
- ArrayList <BigInteger > testSet = new ArrayList <BigInteger >();
135
- for (int i =0 ; i <nCount ;) {
136
- BigInteger testNum = new BigInteger (bits , RNG );
137
- if (testNum .bitLength ()<bits ) continue ; // not exact size, skip
138
- testSet .add (testNum );
139
- i ++;
140
- }
141
- return testSet ;
142
- }
143
-
144
- private static void testCorrectness (int nCount ) {
145
- for (int bits = 100 ; bits <=130 ; bits +=1 ) {
146
- LOG .info ("test correctness of sqrt() implementations for " + bits + "-bit numbers..." );
147
- ArrayList <BigInteger > testSet = createTestSet (nCount , bits );
148
- for (BigInteger testNum : testSet ) {
149
- testCorrectness (testNum , bits , iSqrt /*_v01*/ (testNum ), "v01" );
150
- }
151
- }
152
- }
153
-
154
- private static void testCorrectness (BigInteger testNum , int bits , BigInteger [] result , String algStr ) {
155
- BigInteger lower = result [0 ];
156
- BigInteger lowerSquare = lower .multiply (lower );
157
- if (lowerSquare .compareTo (testNum ) > 0 ) LOG .error (algStr + ": ERROR at " + bits + " bits: lower bound of sqrt(" + testNum + ") = " + lower + " is too big" );
158
- BigInteger upper = result [1 ];
159
- BigInteger upperSquare = upper .multiply (upper );
160
- if (upperSquare .compareTo (testNum ) < 0 ) LOG .error (algStr + ": ERROR at " + bits + " bits: upper bound of sqrt(" + testNum + ") = " + upper + " is too small" );
161
-
162
- if (lowerSquare .equals (testNum ) || upperSquare .equals (testNum )) {
163
- if (!lower .equals (upper )) LOG .error (algStr + ": ERROR at " + bits + " bits: sqrt(" + testNum + ") is exact, but the computed bounds = [" + lower + ", " + upper + "] are different!" );
164
- } else {
165
- if (upper .subtract (lower ).compareTo (I_1 )>0 ) LOG .error (algStr + ": ERROR at " + bits + " bits: lower and upper bound of sqrt(" + testNum + ") = [" + lower + ", " + upper + "] differ by more than 1" );
166
- }
167
- }
168
-
169
- private static void testPerformance (int nCount ) {
170
- for (int bits = 10 ; ; bits += 10 /*RNG.nextInt(50)*/ ) {
171
- ArrayList <BigInteger > testSet = createTestSet (nCount , bits );
172
- LOG .info ("test sqrt of " + bits + "-bit numbers:" );
173
- long t0 , t1 ;
174
- t0 = System .currentTimeMillis ();
175
- for (BigInteger testNum : testSet ) {
176
- iSqrt /*_v01*/ (testNum );
177
- }
178
- t1 = System .currentTimeMillis ();
179
- LOG .info (" v01 sqrt with " + nCount + " numbers took " + (t1 -t0 ) + " ms" );
180
- }
181
- }
182
-
183
- /**
184
- * Test.
185
- * @param args ignored
186
- */
187
- public static void main (String [] args ) {
188
- ConfigUtil .initProject ();
189
- testCorrectness (100000 );
190
- testPerformance (1000000 );
191
- }
192
122
}
0 commit comments