Skip to content

Commit 3071a7c

Browse files
committed
next PollardRhoBrentMontgomery64 version working with 63-bit inputs
1 parent 7f7c0a8 commit 3071a7c

File tree

2 files changed

+28
-7
lines changed

2 files changed

+28
-7
lines changed

src/main/java/de/tilman_neumann/jml/base/Uint128.java

+23
Original file line numberDiff line numberDiff line change
@@ -245,6 +245,29 @@ public static Uint128 spMul64_MH(long a, long b) {
245245

246246
return new Uint128(r_hi, r_lo);
247247
}
248+
249+
/**
250+
* Multiplication of two signed 64-bit integers using Math.multiplyHigh().
251+
* Pretty fast if supported by intrinsics, which needs newer hardware and Java 10+.<br><br>
252+
*
253+
* @param a
254+
* @param b
255+
* @return
256+
*/
257+
// TODO the method doesn't belong to this class anymore (because it's signed); several method names and coments need a workover
258+
public static Uint128 mul64_MH_signed(long a, long b) {
259+
final long r_lo = a*b;
260+
long r_hi = Math.multiplyHigh(a, b);
261+
262+
if (DEBUG) {
263+
// compare to pure Java implementation
264+
Uint128 testResult = mul64(a, b); // TODO compare with signed implementation
265+
Ensure.ensureEquals(testResult.high, r_hi);
266+
Ensure.ensureEquals(testResult.low, r_lo);
267+
}
268+
269+
return new Uint128(r_hi, r_lo);
270+
}
248271

249272
/**
250273
* The square of an unsigned 64 bit integer.

src/main/java/de/tilman_neumann/jml/factor/pollardRho/PollardRhoBrentMontgomery64MH.java

+5-7
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ public String getName() {
6868

6969
@Override
7070
public BigInteger findSingleFactor(BigInteger N) {
71-
// there is a complication with this check: The algorithm works for some 63-bit numbers and there are tests for it, but there may be 63-bit numbers where it fails
71+
// this version works for all 63 bit numbers!
7272
if (N.bitLength() > 63) { // this check should be negligible in terms of performance
7373
throw new IllegalArgumentException("N = " + N + " has " + N.bitLength() + " bit, but " + getName() + " only supports arguments <= 63 bit");
7474
}
@@ -108,8 +108,7 @@ public long findSingleFactor(long nOriginal) {
108108
final int iMax = Math.min(m, r-k);
109109
for (int i=iMax; i>0; i--) {
110110
y = montMul64(y, y+1, n, minusNInvModR);
111-
final long diff = x<y ? y-x : x-y; // XXX would be nice if we could get rid of this like in PollardRhoBrentMontgomery32
112-
q = montMul64(diff, q, n, minusNInvModR);
111+
q = montMul64(y-x, q, n, minusNInvModR);
113112
}
114113
G = gcd.gcd(q, n);
115114
// if q==0 then G==n -> the loop will be left and restarted with new y
@@ -122,8 +121,7 @@ public long findSingleFactor(long nOriginal) {
122121
if (G==n) {
123122
do {
124123
ys = montMul64(ys, ys+1, n, minusNInvModR);
125-
final long diff = x<ys ? ys-x : x-ys;
126-
G = gcd.gcd(diff, n);
124+
G = gcd.gcd(ys-x, n);
127125
} while (G==1);
128126
if (DEBUG) LOG.debug("G = " + G);
129127
}
@@ -170,7 +168,7 @@ private void setUpMontgomeryMult() {
170168
*/
171169
public static long montMul64(long a, long b, long N, long Nhat) {
172170
// Step 1: Compute a*b
173-
Uint128 ab = Uint128.spMul64_MH(a, b);
171+
Uint128 ab = Uint128.mul64_MH_signed(a, b);
174172

175173
// Step 2: Compute t = ab * (-1/N) mod R
176174
// Since R=2^64, "x mod R" just means to get the low part of x.
@@ -180,7 +178,7 @@ public static long montMul64(long a, long b, long N, long Nhat) {
180178

181179
// Step 3: Compute r = (a*b + t*N) / R
182180
// Since R=2^64, "x / R" just means to get the high part of x.
183-
long r = ab.add_getHigh(Uint128.spMul64_MH(t, N));
181+
long r = ab.add_getHigh(Uint128.mul64_MH_signed(t, N));
184182
// If the correct result is c, then now r==c or r==c+N.
185183
// This is fine for this factoring algorithm, because r will
186184
// * either be subjected to another Montgomery multiplication mod N,

0 commit comments

Comments
 (0)